Development of a Para-AMR algorithm for simulating dendrite growth under convection using a phase-field-lattice Boltzmann method

By combining adaptive mesh refinement and parallel computing, a high performance numerical algorithm was developed to simulate dendrite growth against convection using a phase-field–lattice Boltzmann method. Numerical tests on both 2-D and 3-D dendrite growth cases revealed that, by employing moderate amount of computing resources ( 10 1 –10 2 1 0 1 – 1 0 2 parallel processes), this algorithm, without compromising any accuracy, could improve the computational efficiency by 2–3 orders of magnitude, or for most cases shorten the overall elapsed simulation time by 95%, comparing with the normally applied explicit algorithm. Besides, the computational stability or convergence of the algorithm could be maintained even when the local volume fraction of solid approached ∼100% ∼ 100 % , which could not be achieved if other implicit algorithms like SIMPLE was employed.

[1]  Y. Shibuta,et al.  Two-dimensional phase-field study of competitive grain growth during directional solidification of polycrystalline binary alloy , 2016 .

[2]  Michel Rappaz,et al.  Orientation selection in dendritic evolution , 2006, Nature materials.

[3]  Henning Friis Poulsen,et al.  Determining material parameters using phase-field simulations and experiments , 2017 .

[4]  A. Karma,et al.  Phase-field simulations of dendritic crystal growth in a forced flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Zhipeng Guo,et al.  On solving the 3-D phase field equations by employing a parallel-adaptive mesh refinement (Para-AMR) algorithm , 2015, Comput. Phys. Commun..

[6]  Matthaeus,et al.  Lattice Boltzmann model for simulation of magnetohydrodynamics. , 1991, Physical review letters.

[7]  S. Orszag,et al.  Numerical investigation of transitional and weak turbulent flow past a sphere , 2000, Journal of Fluid Mechanics.

[8]  Juan C. Ramirez,et al.  Examination of binary alloy free dendritic growth theories with a phase-field model , 2005 .

[9]  Ryo Kobayashi,et al.  A Numerical Approach to Three-Dimensional Dendritic Solidification , 1994, Exp. Math..

[10]  Marsha Berger,et al.  Three-Dimensional Adaptive Mesh Refinement for Hyperbolic Conservation Laws , 1994, SIAM J. Sci. Comput..

[11]  Gustav Amberg,et al.  Phase-field simulation of dendritic growth in a shear flow , 1998 .

[12]  Shoumei Xiong,et al.  Eutectic pattern transition under different temperature gradients: A phase field study coupled with the parallel adaptive-mesh-refinement algorithm , 2017 .

[13]  Zhipeng Guo,et al.  An implicit parallel multigrid computing scheme to solve coupled thermal-solute phase-field equations for dendrite evolution , 2012, J. Comput. Phys..

[14]  K. Luo,et al.  Lattice Boltzmann modelling of electro-thermo-convection in a planar layer of dielectric liquid subjected to unipolar injection and thermal gradient , 2016 .

[15]  A. Karma,et al.  Regular Article: Modeling Melt Convection in Phase-Field Simulations of Solidification , 1999 .

[16]  Raffaele Tripiccione,et al.  Massively parallel lattice-Boltzmann codes on large GPU clusters , 2016, Parallel Comput..

[17]  Christoph Beckermann,et al.  CONVECTION EFFECTS IN THREE-DIMENSIONAL DENDRITIC GROWTH , 2001 .

[18]  Y. Shibuta,et al.  Primary arm array during directional solidification of a single-crystal binary alloy: Large-scale phase-field study , 2016 .

[19]  S. Roller,et al.  A robust lattice Boltzmann method for parallel simulations of multicomponent flows in complex geometries , 2017 .

[20]  C. C. Chen,et al.  Adaptive phase field simulation of dendritic crystal growth in a forced flow: 2D vs 3D morphologies , 2009 .

[21]  Isidore Rigoutsos,et al.  An algorithm for point clustering and grid generation , 1991, IEEE Trans. Syst. Man Cybern..

[22]  Ulrich Rüde,et al.  Phase-field simulations of spiral growth during directional ternary eutectic solidification , 2016 .

[23]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[24]  Gerard M. Faeth,et al.  Sphere wakes in still surroundings at intermediate Reynolds numbers , 1993 .

[25]  A. Karma Phase-field formulation for quantitative modeling of alloy solidification. , 2001, Physical review letters.

[26]  Daniel Y. Kwok,et al.  A lattice Boltzmann model for electrokinetic microchannel flow of electrolyte solution in the presence of external forces with the Poisson–Boltzmann equation , 2003 .

[27]  S. Felicelli,et al.  Simulation of a dendritic microstructure with the lattice Boltzmann and cellular automaton methods , 2011 .

[28]  B. Chopard,et al.  Theory and applications of an alternative lattice Boltzmann grid refinement algorithm. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  A. Acrivos,et al.  Slow flow through a periodic array of spheres , 1982 .

[30]  Dmitry Medvedev,et al.  Lattice Boltzmann scheme for crystal growth in external flows. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Shoumei Xiong,et al.  Effect of different solute additions on dendrite morphology and orientation selection in cast binary magnesium alloys , 2016 .

[32]  Efthimios Kaxiras,et al.  Parallel in time approximation of the lattice Boltzmann method for laminar flows , 2014, J. Comput. Phys..

[33]  Ulrich Rüde,et al.  Large scale phase-field simulations of directional ternary eutectic solidification , 2015 .

[34]  D. Frenkel,et al.  Discrete solution of the electrokinetic equations. , 2004, The Journal of chemical physics.

[35]  Hans Petter Langtangen,et al.  Finite Difference Computing with PDEs , 2017 .

[36]  S. Xiong,et al.  Characterisation of the 3-D dendrite morphology of magnesium alloys using synchrotron X-ray tomography and 3-D phase-field modelling , 2015 .

[37]  N. Goldenfeld,et al.  Phase field model for three-dimensional dendritic growth with fluid flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Patrick S. Grant,et al.  Phase Field Simulation of Binary Alloy Dendrite Growth Under Thermal- and Forced-Flow Fields: An Implementation of the Parallel–Multigrid Approach , 2013, Metallurgical and Materials Transactions B.

[39]  Dierk Raabe,et al.  Lattice Boltzmann modeling of dendritic growth in a forced melt convection , 2009 .

[40]  P. Lallemand,et al.  Lattice Boltzmann method for moving boundaries , 2003 .

[41]  Chih-Jen Shih,et al.  Phase field simulation of non-isothermal free dendritic growth of a binary alloy in a forced flow , 2004 .

[42]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[43]  Zhipeng Guo,et al.  Phase field study of the tip operating state of a freely growing dendrite against convection using a novel parallel multigrid approach , 2014, J. Comput. Phys..

[44]  Jonathan A. Dantzig,et al.  Dendritic growth with fluid flow in pure materials , 2003 .

[45]  Iraj Mortazavi,et al.  Direct numerical simulations of three-dimensional flows past obstacles with a vortex penalization method , 2016 .

[46]  T. Takaki,et al.  Unexpected selection of growing dendrites by very-large-scale phase-field simulation , 2013 .

[47]  Jean Bragard,et al.  Linking Phase-Field and Atomistic Simulations to Model Dendritic Solidification in Highly Undercooled Melts , 2001 .

[48]  I. Steinbach,et al.  Modeling the flow in diffuse interface methods of solidification. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Y. Shibuta,et al.  Multi-GPUs parallel computation of dendrite growth in forced convection using the phase-field-lattice Boltzmann model , 2017 .