MODELING THE SWIFT BAT TRIGGER ALGORITHM WITH MACHINE LEARNING
暂无分享,去创建一个
P. Graff | A. Lien | T. Sakamoto | J. Baker
[1] A. Melandri,et al. The rate and luminosity function of long Gamma Ray Bursts , 2015, 1506.05463.
[2] Frank Ohme,et al. DISTINGUISHING COMPACT BINARY POPULATION SYNTHESIS MODELS USING GRAVITATIONAL WAVE OBSERVATIONS OF COALESCING BINARY BLACK HOLES , 2015, 1504.07802.
[3] Z. Dai,et al. AN UNEXPECTEDLY LOW-REDSHIFT EXCESS OF SWIFT GAMMA-RAY BURST RATE , 2015, 1504.01812.
[4] Ellie Kitanidis,et al. COSMOLOGICAL EVOLUTION OF LONG GAMMA-RAY BURSTS AND THE STAR FORMATION RATE , 2015, 1504.01414.
[5] G. Stratta,et al. Constraining the rate and luminosity function of Swift gamma-ray bursts , 2014, 1407.2333.
[6] J. Pacheco,et al. Revisiting the Formation Rate and the Redshift Distribution of LGRBs , 2013, 1309.1399.
[7] Farhan Feroz,et al. SKYNET: an efficient and robust neural network training tool for machine learning in astronomy , 2013, ArXiv.
[8] A. Lien,et al. PROBING THE COSMIC GAMMA-RAY BURST RATE WITH TRIGGER SIMULATIONS OF THE SWIFT BURST ALERT TELESCOPE , 2013, 1308.3720.
[9] Fayin Wang,et al. The high-redshift star formation rate derived from GRBs: possible origin and cosmic reionization , 2013, 1401.5864.
[10] M. Branchesi,et al. The Swift gamma-ray burst redshift distribution: selection biases and optical brightness evolution at high z? , 2012, 1210.2488.
[11] G. Letawe,et al. THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. III. REDSHIFT DISTRIBUTION , 2012, 1205.3490.
[12] A. J. Levan,et al. STAR FORMATION IN THE EARLY UNIVERSE: BEYOND THE TIP OF THE ICEBERG , 2012, 1201.6074.
[13] S. Woosley,et al. LONG GAMMA-RAY TRANSIENTS FROM COLLAPSARS , 2011, 1110.3842.
[14] S. Campana,et al. A complete sample of bright Swift long gamma-ray bursts: testing the spectral-energy correlations , 2011, 1112.4470.
[15] Farhan Feroz,et al. BAMBI: blind accelerated multimodal Bayesian inference , 2011, 1110.2997.
[16] B. Robertson,et al. CONNECTING THE GAMMA RAY BURST RATE AND THE COSMIC STAR FORMATION HISTORY: IMPLICATIONS FOR REIONIZATION AND GALAXY EVOLUTION , 2011, 1109.0990.
[17] Bing Zhang,et al. Gamma-ray burst rate: high-redshift excess and its possible origins , 2011, 1105.4650.
[18] P. Jakobsson,et al. The Optically Unbiased GRB Host (TOUGH) Survey , 2011, Proceedings of the International Astronomical Union.
[19] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[20] P. Jakobsson,et al. Redshift distribution and luminosity function of long gamma-ray bursts from cosmological simulations , 2010, 1005.3700.
[21] Shuang-Nan Zhang,et al. Simulations on high-z long gamma-ray burst rate , 2009, 0912.5382.
[22] D. Wanderman,et al. The luminosity function and the rate of Swift's Gamma Ray Bursts , 2009, 0912.0709.
[23] Nathaniel R. Butler,et al. THE COSMIC RATE, LUMINOSITY FUNCTION, AND INTRINSIC CORRELATIONS OF LONG GAMMA-RAY BURSTS , 2009, 0910.3341.
[24] D. A. Kann,et al. LOW-RESOLUTION SPECTROSCOPY OF GAMMA-RAY BURST OPTICAL AFTERGLOWS: BIASES IN THE SWIFT SAMPLE AND CHARACTERIZATION OF THE ABSORBERS , 2009, 0907.3449.
[25] Andrew M. Hopkins,et al. THE STAR FORMATION RATE IN THE REIONIZATION ERA AS INDICATED BY GAMMA-RAY BURSTS , 2009, 0906.0590.
[26] F. Feroz,et al. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.
[27] D. Lamb,et al. Intrinsic properties of a complete sample of HETE-2 Gamma-ray bursts A measure of the GRB rate in the Local Universe , 2008, 0811.3304.
[28] C. Guidorzi,et al. Evidence for Luminosity Evolution of Long Gamma-ray Bursts in Swift Data , 2008, 0805.4104.
[29] Andrew M. Hopkins,et al. Revealing the High-Redshift Star Formation Rate with Gamma-Ray Bursts , 2008, 0804.4008.
[30] John F. Beacom,et al. An Unexpectedly Swift Rise in the Gamma-Ray Burst Rate , 2007, 0709.0381.
[31] F. Feroz,et al. Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.
[32] T. Piran,et al. Do long duration gamma ray bursts follow star formation? , 2007, astro-ph/0701194.
[33] Massimo Della Valle,et al. On the Rates of Gamma-Ray Bursts and Type Ib/c Supernovae , 2006, astro-ph/0612194.
[34] Charles D. Dermer,et al. On the Redshift Distribution of Gamma-Ray Bursts in the Swift Era , 2006, astro-ph/0610043.
[35] A. Hopkins,et al. On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.
[36] D. Palmer,et al. The BAT-Swift Science Software , 2004, astro-ph/0408494.
[37] N. Gehrels,et al. Swift's Ability to Detect Gamma-Ray Bursts , 2004, astro-ph/0408513.
[38] S. Barthelmy,et al. Setting the Triggering Thresholds on Swift , 2004, astro-ph/0408512.
[39] Alan A. Wells,et al. The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.
[40] Scott D. Barthelmy,et al. The Burst Alert Telescope (BAT) on the SWIFT Midex Mission , 2004, SPIE Optics + Photonics.
[41] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[42] Corinna Cortes,et al. Support-Vector Networks , 1995, Machine Learning.
[43] John Mingers,et al. An Empirical Comparison of Pruning Methods for Decision Tree Induction , 1989, Machine Learning.
[44] M. Galassi,et al. GAMMA-RAY BURSTS: 30 YEARS OF DISCOVERY , 2004 .
[45] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[46] S. Barthelmy,et al. The Trigger algorithm for the Burst Alert Telescope on Swift , 2004, astro-ph/0408514.
[47] V. Bromm. Star formation in the early universe , 2000 .
[48] Pat Langley,et al. Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..
[49] Yoav Freund,et al. A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.
[50] W. Cash,et al. Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .