MODELING THE SWIFT BAT TRIGGER ALGORITHM WITH MACHINE LEARNING

To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift/BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of ≳97% (≲3% error), which is a significant improvement on a cut in GRB flux, which has an accuracy of 89.6% (10.4% error). These models are then used to measure the detection efficiency of Swift as a function of redshift z, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of n 0 ∼ 0.48 − 0.23 + 0.41 Gpc − 3 yr − 1 ?> with power-law indices of n 1 ∼ 1.7 − 0.5 + 0.6 ?> and n 2 ∼ − 5.9 − 0.1 + 5.7 ?> for GRBs above and below a break point of z 1 ∼ 6.8 − 3.2 + 2.8 ?> . This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting.

[1]  A. Melandri,et al.  The rate and luminosity function of long Gamma Ray Bursts , 2015, 1506.05463.

[2]  Frank Ohme,et al.  DISTINGUISHING COMPACT BINARY POPULATION SYNTHESIS MODELS USING GRAVITATIONAL WAVE OBSERVATIONS OF COALESCING BINARY BLACK HOLES , 2015, 1504.07802.

[3]  Z. Dai,et al.  AN UNEXPECTEDLY LOW-REDSHIFT EXCESS OF SWIFT GAMMA-RAY BURST RATE , 2015, 1504.01812.

[4]  Ellie Kitanidis,et al.  COSMOLOGICAL EVOLUTION OF LONG GAMMA-RAY BURSTS AND THE STAR FORMATION RATE , 2015, 1504.01414.

[5]  G. Stratta,et al.  Constraining the rate and luminosity function of Swift gamma-ray bursts , 2014, 1407.2333.

[6]  J. Pacheco,et al.  Revisiting the Formation Rate and the Redshift Distribution of LGRBs , 2013, 1309.1399.

[7]  Farhan Feroz,et al.  SKYNET: an efficient and robust neural network training tool for machine learning in astronomy , 2013, ArXiv.

[8]  A. Lien,et al.  PROBING THE COSMIC GAMMA-RAY BURST RATE WITH TRIGGER SIMULATIONS OF THE SWIFT BURST ALERT TELESCOPE , 2013, 1308.3720.

[9]  Fayin Wang,et al.  The high-redshift star formation rate derived from GRBs: possible origin and cosmic reionization , 2013, 1401.5864.

[10]  M. Branchesi,et al.  The Swift gamma-ray burst redshift distribution: selection biases and optical brightness evolution at high z? , 2012, 1210.2488.

[11]  G. Letawe,et al.  THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. III. REDSHIFT DISTRIBUTION , 2012, 1205.3490.

[12]  A. J. Levan,et al.  STAR FORMATION IN THE EARLY UNIVERSE: BEYOND THE TIP OF THE ICEBERG , 2012, 1201.6074.

[13]  S. Woosley,et al.  LONG GAMMA-RAY TRANSIENTS FROM COLLAPSARS , 2011, 1110.3842.

[14]  S. Campana,et al.  A complete sample of bright Swift long gamma-ray bursts: testing the spectral-energy correlations , 2011, 1112.4470.

[15]  Farhan Feroz,et al.  BAMBI: blind accelerated multimodal Bayesian inference , 2011, 1110.2997.

[16]  B. Robertson,et al.  CONNECTING THE GAMMA RAY BURST RATE AND THE COSMIC STAR FORMATION HISTORY: IMPLICATIONS FOR REIONIZATION AND GALAXY EVOLUTION , 2011, 1109.0990.

[17]  Bing Zhang,et al.  Gamma-ray burst rate: high-redshift excess and its possible origins , 2011, 1105.4650.

[18]  P. Jakobsson,et al.  The Optically Unbiased GRB Host (TOUGH) Survey , 2011, Proceedings of the International Astronomical Union.

[19]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[20]  P. Jakobsson,et al.  Redshift distribution and luminosity function of long gamma-ray bursts from cosmological simulations , 2010, 1005.3700.

[21]  Shuang-Nan Zhang,et al.  Simulations on high-z long gamma-ray burst rate , 2009, 0912.5382.

[22]  D. Wanderman,et al.  The luminosity function and the rate of Swift's Gamma Ray Bursts , 2009, 0912.0709.

[23]  Nathaniel R. Butler,et al.  THE COSMIC RATE, LUMINOSITY FUNCTION, AND INTRINSIC CORRELATIONS OF LONG GAMMA-RAY BURSTS , 2009, 0910.3341.

[24]  D. A. Kann,et al.  LOW-RESOLUTION SPECTROSCOPY OF GAMMA-RAY BURST OPTICAL AFTERGLOWS: BIASES IN THE SWIFT SAMPLE AND CHARACTERIZATION OF THE ABSORBERS , 2009, 0907.3449.

[25]  Andrew M. Hopkins,et al.  THE STAR FORMATION RATE IN THE REIONIZATION ERA AS INDICATED BY GAMMA-RAY BURSTS , 2009, 0906.0590.

[26]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[27]  D. Lamb,et al.  Intrinsic properties of a complete sample of HETE-2 Gamma-ray bursts A measure of the GRB rate in the Local Universe , 2008, 0811.3304.

[28]  C. Guidorzi,et al.  Evidence for Luminosity Evolution of Long Gamma-ray Bursts in Swift Data , 2008, 0805.4104.

[29]  Andrew M. Hopkins,et al.  Revealing the High-Redshift Star Formation Rate with Gamma-Ray Bursts , 2008, 0804.4008.

[30]  John F. Beacom,et al.  An Unexpectedly Swift Rise in the Gamma-Ray Burst Rate , 2007, 0709.0381.

[31]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[32]  T. Piran,et al.  Do long duration gamma ray bursts follow star formation? , 2007, astro-ph/0701194.

[33]  Massimo Della Valle,et al.  On the Rates of Gamma-Ray Bursts and Type Ib/c Supernovae , 2006, astro-ph/0612194.

[34]  Charles D. Dermer,et al.  On the Redshift Distribution of Gamma-Ray Bursts in the Swift Era , 2006, astro-ph/0610043.

[35]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[36]  D. Palmer,et al.  The BAT-Swift Science Software , 2004, astro-ph/0408494.

[37]  N. Gehrels,et al.  Swift's Ability to Detect Gamma-Ray Bursts , 2004, astro-ph/0408513.

[38]  S. Barthelmy,et al.  Setting the Triggering Thresholds on Swift , 2004, astro-ph/0408512.

[39]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[40]  Scott D. Barthelmy,et al.  The Burst Alert Telescope (BAT) on the SWIFT Midex Mission , 2004, SPIE Optics + Photonics.

[41]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[42]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[43]  John Mingers,et al.  An Empirical Comparison of Pruning Methods for Decision Tree Induction , 1989, Machine Learning.

[44]  M. Galassi,et al.  GAMMA-RAY BURSTS: 30 YEARS OF DISCOVERY , 2004 .

[45]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[46]  S. Barthelmy,et al.  The Trigger algorithm for the Burst Alert Telescope on Swift , 2004, astro-ph/0408514.

[47]  V. Bromm Star formation in the early universe , 2000 .

[48]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[49]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[50]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .