Isometric structure of transportation cost spaces on finite metric spaces
暂无分享,去创建一个
[1] Some natural subspaces and quotient spaces of $L^1$ , 2017, 1702.06049.
[2] Marek C'uth,et al. Isometric embedding of ℓ₁ into Lipschitz-free spaces and ℓ_{∞} into their duals , 2016, 1604.04131.
[3] M. Ostrovskii,et al. Generalized Transportation Cost Spaces , 2019, Mediterranean Journal of Mathematics.
[4] L. Ambrosio,et al. Lectures on Optimal Transport , 2021, UNITEXT.
[5] A. Zvavitch,et al. Geometry and volume product of finite dimensional Lipschitz-free spaces , 2019, Journal of Functional Analysis.
[6] Gershon Wolansky,et al. Optimal Transport , 2021 .
[7] Assaf Naor,et al. Metric dimension reduction: A snapshot of the Ribe program , 2018, Proceedings of the International Congress of Mathematicians (ICM 2018).
[8] Alexandre Godard. Tree metrics and their Lipschitz-free spaces , 2009, 0904.3178.
[9] M. R. Rao,et al. Combinatorial Optimization , 1992, NATO ASI Series.
[10] R. Mortini,et al. Lipschitz algebras , 2021, Extension Problems and Stable Ranks.
[11] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[12] Gideon Schechtman,et al. Planar Earthmover is not in L_1 , 2005, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[13] Prasad Raghavendra,et al. Coarse Differentiation and Multi-flows in Planar Graphs , 2007, APPROX-RANDOM.
[14] Marek C'uth,et al. ISOMETRIC REPRESENTATION OF LIPSCHITZ-FREE SPACES OVER CONVEX DOMAINS IN FINITE-DIMENSIONAL SPACES , 2016, 1610.03966.
[15] M. Ostrovskii. Metric Embeddings: Bilipschitz and Coarse Embeddings into Banach Spaces , 2013 .
[16] S. Dilworth,et al. Lipschitz-free Spaces on Finite Metric Spaces , 2018, Canadian Journal of Mathematics.
[17] A. Naor. Impossibility of almost extension , 2020, 2009.11373.
[18] Moses Charikar,et al. Similarity estimation techniques from rounding algorithms , 2002, STOC '02.
[19] D. J. H. Garling,et al. Analysis on Polish Spaces and an Introduction to Optimal Transportation , 2017 .
[20] Aranyak Mehta,et al. On earthmover distance, metric labeling, and 0-extension , 2006, STOC '06.
[21] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[22] A. Figalli,et al. An Invitation to Optimal Transport, Wasserstein Distances, and Gradient Flows , 2021 .
[23] C. Villani. Topics in Optimal Transportation , 2003 .
[24] Leonidas J. Guibas,et al. A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).
[25] Yuval Rabani,et al. On Lipschitz extension from finite subsets , 2015, 1506.04398.
[26] Subhash Khot,et al. Nonembeddability theorems via Fourier analysis , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[27] J. Bourgain. The metrical interpretation of superreflexivity in banach spaces , 1986 .
[28] Anupam Gupta,et al. Cuts, Trees and ℓ1-Embeddings of Graphs* , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[29] H. Whitney. 2-Isomorphic Graphs , 1933 .
[31] James G. Oxley,et al. Matroid theory , 1992 .
[32] G. Pisier,et al. Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach , 1976 .