High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall

Numerous descriptions of organic molecules present in the Murchison meteorite have improved our understanding of the early interstellar chemistry that operated at or just before the birth of our solar system. However, all molecular analyses were so far targeted toward selected classes of compounds with a particular emphasis on biologically active components in the context of prebiotic chemistry. Here we demonstrate that a nontargeted ultrahigh-resolution molecular analysis of the solvent-accessible organic fraction of Murchison extracted under mild conditions allows one to extend its indigenous chemical diversity to tens of thousands of different molecular compositions and likely millions of diverse structures. This molecular complexity, which provides hints on heteroatoms chronological assembly, suggests that the extraterrestrial chemodiversity is high compared to terrestrial relevant biological- and biogeochemical-driven chemical space.

[1]  A. Bischoff,et al.  Early aqueous activity on primitive meteorite parent bodies , 1996, Nature.

[2]  John F. Kerridge,et al.  Meteorites and the early solar system , 1988 .

[3]  M. Zolensky,et al.  Iron and iron-nickel sulfides in chondritic interplanetary dust particles , 1995 .

[4]  S. Pizzarello,et al.  Molecular and isotopic analyses of the hydroxy acids, dicarboxylic acids, and hydroxicarboxylic acids of the Murchison meteorite. , 1993, Geochimica et cosmochimica acta.

[5]  D. Antia OIL POLYMERISATION AND FLUID EXPULSION FROM LOW TEMPERATURE, LOW MATURITY, OVERPRESSURED SEDIMENTS , 2008 .

[6]  S. Derenne,et al.  Heterogeneous distribution of paramagnetic radicals in insoluble organic matter from the Orgueil and Murchison meteorites , 2002 .

[7]  J. Kerridge,et al.  Early Solar System aqueous activity: Sr isotope evidence from the Orgueil CI meteorite , 1984, Nature.

[8]  Alan E. Rubin,et al.  Progressive aqueous alteration of CM carbonaceous chondrites , 2007 .

[9]  A. Kearsley,et al.  The labelling of meteoritic organic material using osmium tetroxide vapour impregnation , 2007 .

[10]  N. Lerner,et al.  Iminodicarboxylic acids in the Murchison meteorite: Evidence of Strecker reactions , 2005 .

[11]  Sumiko Matsuoka,et al.  Origin of organic matter in the early solar system—VII. The organic polymer in carbonaceous chondrites , 1977 .

[12]  A. Brack,et al.  The molecular origins of life : assembling pieces of the puzzle , 1998 .

[13]  Daniel P. Glavin,et al.  Enrichment of the amino acid l-isovaline by aqueous alteration on CI and CM meteorite parent bodies , 2009, Proceedings of the National Academy of Sciences.

[14]  K. Kvenvolden,et al.  Evidence for Extraterrestrial Amino-acids and Hydrocarbons in the Murchison Meteorite , 1970, Nature.

[15]  JOHN S. Lewis,et al.  Carbonaceous chondrites and the origin of life , 1993, Origins of life and evolution of the biosphere.

[16]  M. Sephton,et al.  Organic compounds in carbonaceous meteorites. , 2002, Natural product reports.

[17]  Michael E. Zolensky,et al.  Correlated alteration effects in CM carbonaceous chondrites , 1996 .

[18]  S. Pizzarello,et al.  13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites. , 1982, Geochimica et cosmochimica acta.

[19]  Michael E. Zolensky,et al.  Nonracemic isovaline in the Murchison meteorite : Chiral distribution and mineral association , 2003 .

[20]  E. M. Levin,et al.  Effect of magnetic particles on NMR spectra of Murchison meteorite organic matter and a polymer-based model system. , 2007, Solid state nuclear magnetic resonance.

[21]  A. Shimoyama,et al.  ORGANIC COMPOUNDS FROM INSOLUBLE ORGANIC MATTER ISOLATED FROM THE MURCHISON CARBONACEOUS CHONDRITE BY HEATING EXPERIMENTS , 1996 .

[22]  S. Derenne,et al.  Solid state CP/MAS 13 C NMR of the insoluble organic matter of the Orgueil and Murchison meteorites: quantitative study , 2000 .

[23]  P. Schmitt‐Kopplin,et al.  Natural organic matter and the event horizon of mass spectrometry. , 2008, Analytical chemistry.

[24]  P. Hoppe,et al.  Interstellar Chemistry Recorded in Organic Matter from Primitive Meteorites , 2006, Science.

[25]  Everett L. Shock,et al.  Coupled organic synthesis and mineral alteration on meteorite parent bodies , 2004 .

[26]  P. Albrecht,et al.  Geochemical study of macromolecular organic matter from sulfur-rich sediments of evaporitic origin (Messinian of Sicily) by chemical degradations , 1995 .

[27]  G. Bancroft,et al.  Direct identification of organic sulphur species in Rasa coal from sulphur L-edge X-ray absorption near-edge spectra , 1992 .

[28]  George D. Cody,et al.  The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter , 2007 .

[29]  Jonathan I. Lunine,et al.  Organic environments on Saturn’s moon, Titan: Simulating chemical reactions and analyzing products by FT-ICR and ion-trap mass spectrometry , 2005, Journal of the American Society for Mass Spectrometry.

[30]  Harry Y. McSween,et al.  Meteorites and the early solar system II , 2006 .

[31]  A. Marshall,et al.  Petroleomics: Chemistry of the underworld , 2008, Proceedings of the National Academy of Sciences.

[32]  Roger E. Summons,et al.  Molecular Biosignatures , 2008 .

[33]  Carl Sagan,et al.  Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life , 1992, Nature.

[34]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[35]  A. Kearsley,et al.  Clay mineral‐organic matter relationships in the early solar system , 2002 .

[36]  S. Derenne,et al.  New pyrolytic and spectroscopic data on Orgueil and Murchison insoluble organic matter: A different origin than soluble? , 2005 .

[37]  G. Cody,et al.  NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups , 2005 .