Complete Characterization of Generalized Bent and 2k-Bent Boolean Functions

In this paper, we investigate properties of generalized bent Boolean functions and <inline-formula><tex-math notation="LaTeX">$2^{k}$</tex-math></inline-formula>-bent (i.e., negabent, octabent, hexadecabent, <italic>et al.</italic>) Boolean functions in a uniform framework. From the Hadamard matrices, Hodžić and Pasalic presented sufficient conditions for generalized bent functions. Using cyclotomic fields and the decomposition of generalized bent functions, we generalize their results, prove that Hodžić and Pasalic’s conditions of generalized bent functions are not only sufficient but also necessary, and completely characterize generalized bent functions in terms of their component functions. Furthermore, we present a secondary construction of bent functions or semi-bent functions from generalized bent functions. Finally, we give the relations of generalized bent functions and <inline-formula><tex-math notation="LaTeX">$2^{k}$</tex-math></inline-formula>-bent functions, demonstrate that <inline-formula><tex-math notation="LaTeX">$2^{k}$</tex-math></inline-formula>-bent functions are actually a special class of generalized bent functions, and completely characterize <inline-formula><tex-math notation="LaTeX">$2^{k}$</tex-math></inline-formula>-bent functions.

[1]  Martin Rötteler,et al.  Homogeneous Bent Functions, Invariants, and Designs , 2002, Des. Codes Cryptogr..

[2]  Matthew G. Parker,et al.  On Boolean Functions Which Are Bent and Negabent , 2007, SSC.

[3]  Patrick Solé,et al.  Connections between Quaternary and Binary Bent Functions , 2009, IACR Cryptol. ePrint Arch..

[4]  Sihem Mesnager,et al.  Bent Functions: Fundamentals and Results , 2016 .

[5]  Natalia Tokareva,et al.  Bent Functions: Results and Applications to Cryptography , 2015 .

[6]  L. Washington Introduction to Cyclotomic Fields , 1982 .

[7]  Matthew G. Parker,et al.  Generalized Bent Criteria for Boolean Functions (I) , 2005, IEEE Transactions on Information Theory.

[8]  Pantelimon Stanica,et al.  Cryptographic Boolean Functions and Applications , 2009 .

[9]  Brajesh Kumar Singh On cross-correlation spectrum of generalized bent functions in generalized Maiorana-McFarland class , 2013 .

[10]  Pantelimon Stanica On Weak and Strong $2^{k}$ -Bent Boolean Functions , 2016, IEEE Transactions on Information Theory.

[11]  Enes Pasalic,et al.  Construction methods for generalized bent functions , 2018, Discret. Appl. Math..

[12]  Sugata Gangopadhyay,et al.  Investigations on Bent and Negabent Functions via the Nega-Hadamard Transform , 2012, IEEE Transactions on Information Theory.

[13]  Sihem Mesnager,et al.  Decomposing Generalized Bent and Hyperbent Functions , 2017, IEEE Transactions on Information Theory.

[14]  Robert A. Scholtz,et al.  Bent-function sequences , 1982, IEEE Trans. Inf. Theory.

[15]  Alexander Pott,et al.  Nonlinear functions in abelian groups and relative difference sets , 2004, Discret. Appl. Math..

[16]  Claude Carlet,et al.  Boolean Functions for Cryptography and Error-Correcting Codes , 2010, Boolean Models and Methods.

[17]  Enes Pasalic,et al.  Full Characterization of Generalized Bent Functions as (Semi)-Bent Spaces, Their Dual, and the Gray Image , 2018, IEEE Transactions on Information Theory.

[18]  Pantelimon Stanica,et al.  Generalized Bent Functions and Their Gray Images , 2016, WAIFI.

[19]  Enes Pasalic,et al.  Generalized bent functions - sufficient conditions and related constructions , 2017, Adv. Math. Commun..

[20]  Enes Pasalic,et al.  Generalized Bent Functions - Some General Construction Methods and Related Necessary and Sufficient Conditions , 2015, Cryptography and Communications.

[21]  Claude Carlet,et al.  Vectorial Boolean Functions for Cryptography , 2006 .

[22]  Kai-Uwe Schmidt,et al.  Quaternary Constant-Amplitude Codes for Multicode CDMA , 2006, IEEE Transactions on Information Theory.

[23]  Brajesh Kumar Singh Secondary constructions on generalized bent functions , 2012, IACR Cryptol. ePrint Arch..

[24]  Xiaohu Tang,et al.  Characterization of Negabent Functions and Construction of Bent-Negabent Functions With Maximum Algebraic Degree , 2013, IEEE Transactions on Information Theory.

[25]  O. S. Rothaus,et al.  On "Bent" Functions , 1976, J. Comb. Theory, Ser. A.

[26]  Sugata Gangopadhyay,et al.  Bent and generalized bent Boolean functions , 2013, Des. Codes Cryptogr..

[27]  Kai-Uwe Schmidt Complementary Sets, Generalized Reed–Muller Codes, and Power Control for OFDM , 2007, IEEE Transactions on Information Theory.