A closed-form solution for options with ambiguity about stochastic volatility

We derive a closed-form solution for the price of a European call option in the presence of ambiguity about the stochastic process that determines the variance of the underlying asset’s return. The option pricing formula of Heston (Rev Financ Stud 6(2):327–343, 1993) is a particular case of ours, corresponding to the case in which there is no ambiguity (uncertainty is exclusively risk). In the presence of ambiguity, the variance uncertainty price becomes either a convex or a concave function of the instantaneous variance, depending on whether the variance ambiguity price is negative or positive. We find that if the variance ambiguity price is positive, the option price is decreasing in the level of ambiguity (across all moneyness levels). The opposite happens if the variance ambiguity price is negative. This option pricing model can be used to address various empirical research topics in the future.

[1]  Larry G. Epstein,et al.  Ambiguity and Asset Markets , 2010 .

[2]  Pascal J. Maenhout,et al.  The Price of Correlation Risk: Evidence from Equity Options , 2006 .

[3]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[4]  Jun Pan The jump-risk premia implicit in options: evidence from an integrated time-series study $ , 2002 .

[5]  Jakša Cvitanić,et al.  Super-replication in stochastic volatility models under portfolio constraints , 1999, Journal of Applied Probability.

[6]  Wim Schoutens,et al.  Calibration risk: Illustrating the impact of calibration risk under the Heston model , 2012 .

[7]  T. Bollerslev,et al.  MODELING AND PRICING LONG- MEMORY IN STOCK MARKET VOLATILITY , 1996 .

[8]  Colin Camerer,et al.  Recent developments in modeling preferences: Uncertainty and ambiguity , 1992 .

[9]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[10]  OPTION PRICING MODELS & VOLATILITY USING EXCEL®-VBA , 2007 .

[11]  David S. Bates Post-'87 crash fears in the S&P 500 futures option market , 2000 .

[12]  D. Sondermann Hedging of non-redundant contingent claims , 1985 .

[13]  A. Gyles Asset Price Dynamics, Volatility, and Prediction , 2007 .

[14]  E. Hille,et al.  Ordinary di?erential equations in the complex domain , 1976 .

[15]  A. Yaron,et al.  What's Vol Got to Do With It , 2009 .

[16]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[17]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[18]  Nicholas G. Polson,et al.  The Impact of Jumps in Volatility and Returns , 2000 .

[19]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[20]  Tatjana Chudjakow,et al.  Exercise strategies for American exotic options under ambiguity , 2011 .

[21]  Tim Bollerslev,et al.  Tails, Fears and Risk Premia , 2009 .

[22]  T. Alderweireld,et al.  A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.

[23]  T. Sargent,et al.  Acknowledging Misspecification in Macroeconomic Theory , 2001 .

[24]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[25]  I. Drechsler,et al.  Uncertainty, Time-Varying Fear, and Asset Prices , 2013 .

[26]  Lorenzo Garlappi,et al.  Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach , 2004 .

[27]  A. Mijatović,et al.  Empirical Asset Pricing with Nonlinear Risk Premia , 2009, 0911.0928.

[28]  Jianjun Miao,et al.  Risk, Uncertainty, and Option Exercise , 2004 .

[29]  E. Stein,et al.  Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .

[30]  Á. Cartea,et al.  Irreversible Investments and Ambiguity Aversion , 2011 .

[31]  F. Riedel Optimal Stopping With Multiple Priors , 2009 .

[32]  Martin Schneider,et al.  Recursive multiple-priors , 2003, J. Econ. Theory.

[33]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[34]  H. Henry Cao,et al.  Model Uncertainty, Limited Market Participation and Asset Prices , 2003 .

[35]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[36]  D. Shanno,et al.  Option Pricing when the Variance Is Changing , 1987, Journal of Financial and Quantitative Analysis.

[37]  Jun Pan,et al.  Transform Analysis and Asset Pricing for AÆne Jump-Di usions , 1999 .

[38]  Bjørn Eraker Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices , 2004 .

[39]  R. C. Merton,et al.  On Estimating the Expected Return on the Market: An Exploratory Investigation , 1980 .

[40]  D. Roubaud,et al.  Real Options under Ambiguity: the case for Choquet-Brownian motions. , 2010 .

[41]  Jun Liu,et al.  An Equilibrium Model of Rare Event Premia , 2002 .

[42]  T. Sargent,et al.  ROBUST PERMANENT INCOME AND PRICING WITH FILTERING , 2002, Macroeconomic Dynamics.

[43]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[44]  Louis O. Scott Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application , 1987, Journal of Financial and Quantitative Analysis.

[45]  Nikunj Kapadia,et al.  Volatility Risk Premiums Embedded in Individual Equity Options , 2003 .

[46]  Ambiguity Aversion in Real Options , 2011 .

[47]  Takashi Ui,et al.  The Ambiguity Premium vs. the Risk Premium under Limited Market Participation , 2011 .

[48]  Jun Pan The jump-risk premia implicit in options: evidence from an integrated time-series study , 2001 .

[49]  R. Lucas ASSET PRICES IN AN EXCHANGE ECONOMY , 1978 .

[50]  OPTION PRICING MODELS & VOLATILITY USING EXCEL s -VBA , 2007 .

[51]  R. Chou,et al.  ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .

[52]  P. Carr,et al.  Time-Changed Levy Processes and Option Pricing ⁄ , 2002 .

[53]  F. Riedel,et al.  Optimal stopping under ambiguity in continuous time , 2013 .

[54]  Viktor Todorov,et al.  Variance Risk-Premium Dynamics: The Role of Jumps , 2010 .

[55]  Peter Carr,et al.  Variance Risk Premiums , 2009 .

[56]  Oleg Bondarenko Market Price of Variance Risk and Performance of Hedge Funds , 2004 .

[57]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[58]  Hans Föllmer,et al.  Efficient hedging: Cost versus shortfall risk , 2000, Finance Stochastics.

[59]  F. Trojani,et al.  Robustness and Ambiguity Aversion in General Equilibrium , 2004 .

[60]  James B. Wiggins Option values under stochastic volatility: Theory and empirical estimates , 1987 .

[61]  J. Tallon,et al.  Decision Theory Under Ambiguity , 2012 .

[62]  Liuren Wu,et al.  The Term Structure of Variance Swap Rates and Optimal Variance Swap Investments , 2010, Journal of Financial and Quantitative Analysis.

[63]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[64]  M. Rubinstein. Implied Binomial Trees , 1994 .

[65]  S. Ross,et al.  AN INTERTEMPORAL GENERAL EQUILIBRIUM MODEL OF ASSET PRICES , 1985 .

[66]  Patrick Cheridito,et al.  Market price of risk speci-fications for a ne models: theory and evidence , 2004 .

[67]  Morton I. Kamien,et al.  Dynamic Optimization , 2020, Natural Resource Economics.

[68]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .

[69]  M. Walker Nothing to fear but fear itself , 1999 .

[70]  Jun Pan,et al.  An Equilibrium Model of Rare-Event Premia and Its Implication for Option Smirks , 2005 .

[71]  P. Carr,et al.  The Finite Moment Log Stable Process and Option Pricing , 2003 .

[72]  P. Carr,et al.  Variance Risk Premia , 2007 .

[73]  Pascal J. Maenhout Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium , 2006, J. Econ. Theory.

[74]  Jun Pan The Jump-Risk Premia Implicit in Options : Evidence from an Integrated Time-Series Study , 2001 .

[75]  A. Rustichini,et al.  Ambiguity Aversion, Robustness, and the Variational Representation of Preferences , 2006 .

[76]  S. Heston,et al.  A Closed-Form GARCH Option Valuation Model , 2000 .

[77]  P. Gagliardini,et al.  Ambiguity Aversion and the Term Structure of Interest Rates , 2007 .

[78]  Massimo Marinacci,et al.  On the Smooth Ambiguity Model: A Reply , 2012 .

[79]  M. Marinacci,et al.  A Smooth Model of Decision Making Under Ambiguity , 2003 .

[80]  Larry G. Epstein A Paradox for the “Smooth Ambiguity” Model of Preference , 2010 .

[81]  Gonçalo Faria,et al.  The price of risk and ambiguity in an intertemporal general equilibrium model of asset prices , 2012 .