A free-space adaptive fmm-based pde solver in three dimensions

We present a kernel-independent, adaptive fast multipole method (FMM) of arbitrary order accuracy for solving elliptic PDEs in three dimensions with radiation boundary conditions. The algorithm requires only a Green’s function evaluation routine for the governing equation and a representation of the source distribution (the right-hand side) that can be evaluated at arbitrary points. The performance of the FMM is accelerated in two ways. First, we construct a piecewise polynomial approximation of the right-hand side and compute far-field expansions in the FMM from the coefficients of this approximation. Second, we precompute tables of quadratures to handle the near-field interactions on adaptive octree data structures, keeping the total storage requirements in check through the exploitation of symmetries. We present numerical examples for the Laplace, modified Helmholtz and Stokes equations.

[1]  Steffen Börm -Matrix Arithmetics in Linear Complexity , 2005, Computing.

[2]  D. Zorin,et al.  A kernel-independent adaptive fast multipole algorithm in two and three dimensions , 2004 .

[3]  Barbara Chapman,et al.  Using OpenMP - portable shared memory parallel programming , 2007, Scientific and engineering computation.

[4]  John William Strutt,et al.  Scientific Papers: On the Influence of Obstacles arranged in Rectangular Order upon the Properties of a Medium , 2009 .

[5]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[6]  Terje O. Espelid,et al.  Algorithm 698: DCUHRE: an adaptive multidemensional integration routine for a vector of integrals , 1991, TOMS.

[7]  Ramani Duraiswami,et al.  Fast multipole method for the biharmonic equation in three dimensions , 2006, J. Comput. Phys..

[8]  Daniel F. Martin,et al.  Solving Poisson's Equation using Adaptive Mesh Renemen t , 1996 .

[9]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[10]  W. Hackbusch,et al.  On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .

[11]  V. Rokhlin Rapid solution of integral equations of classical potential theory , 1985 .

[12]  V. Rokhlin Rapid Solution of Integral Equations of Scattering Theory , 1990 .

[13]  Johan Helsing,et al.  Fast and accurate calculations of structural parameters for suspensions , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[14]  Marcia O. Fenley,et al.  A Fast Adaptive Multipole Algorithm for Calculating Screened Coulomb (Yukawa) Interactions , 1999 .

[15]  Leslie Greengard,et al.  A fast multipole method for the three-dimensional Stokes equations , 2008, J. Comput. Phys..

[16]  Jingfang Huang,et al.  A parallel fast multipole accelerated integral equation scheme for 3D Stokes equations , 2007 .

[17]  Leslie Greengard,et al.  Fast algorithms for volume integrals in potential theory , 2000 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[20]  L Greengard,et al.  Fast Algorithms for Classical Physics , 1994, Science.

[21]  P. Colella,et al.  A local corrections algorithm for solving Poisson’s equation in three dimensions , 2006 .

[22]  Lexing Ying,et al.  A New Parallel Kernel-Independent Fast Multipole Method , 2003, ACM/IEEE SC 2003 Conference (SC'03).

[23]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .

[24]  Hari Sundar,et al.  Bottom-Up Construction and 2: 1 Balance Refinement of Linear Octrees in Parallel , 2008, SIAM J. Sci. Comput..

[25]  Wolfgang Hackbusch,et al.  Multigrid Methods II , 1986 .

[26]  Anita Mayo,et al.  Fast High Order Accurate Solution of Laplace’s Equation on Irregular Regions , 1985 .

[27]  D. Zorin,et al.  A fast solver for the Stokes equations with distributed forces in complex geometries , 2004 .

[28]  J. Demmel,et al.  Parallel Multigrid Solver for 3D Unstructured Finite Element Problems , 1999, ACM/IEEE SC 1999 Conference (SC'99).

[29]  Tony F. Chan,et al.  Domain decomposition and multigrid algorithms for elliptic problems on unstructured meshes , 1994 .

[30]  Jacques Periaux,et al.  On Domain Decomposition Methods , 1988 .

[31]  Leslie Greengard,et al.  A Fast Direct Solver for Elliptic Partial Differential Equations on Adaptively Refined Meshes , 1999, SIAM J. Sci. Comput..

[32]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[33]  Mark F. Adams,et al.  Parallel multigrid solvers for 3D unstructured finite element problems in large deformation elasticity and plasticity , 2000 .

[34]  Michael J. Frisch,et al.  Achieving Linear Scaling for the Electronic Quantum Coulomb Problem , 1996, Science.

[35]  L. Greengard,et al.  A Fast Poisson Solver for Complex Geometries , 1995 .

[36]  L. Rayleigh,et al.  LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium , 1892 .

[37]  Michael J. Aftosmis,et al.  Adaptive Cartesian mesh generation , 1998 .

[38]  L. Greengard,et al.  A Direct Adaptive Poisson Solver of Arbitrary Order Accuracy , 1996 .

[39]  V. Rokhlin,et al.  Rapid Evaluation of Potential Fields in Three Dimensions , 1988 .

[40]  M. Minion A Projection Method for Locally Refined Grids , 1996 .

[41]  Leslie Greengard,et al.  A New Fast-Multipole Accelerated Poisson Solver in Two Dimensions , 2001, SIAM J. Sci. Comput..

[42]  L. Greengard,et al.  Integral Equation Methods for Stokes Flow and Isotropic Elasticity in the Plane , 1996 .

[43]  Gene H. Golub,et al.  On direct methods for solving Poisson's equation , 1970, Milestones in Matrix Computation.

[44]  HackbuschW. A sparse matrix arithmetic based on H-matrices. Part I , 1999 .

[45]  P. Colella,et al.  A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains , 1998 .

[46]  Jingfang Huang,et al.  An adaptive fast solver for the modified Helmholtz equation in two dimensions , 2006 .

[47]  R. Beatson,et al.  A short course on fast multipole methods , 1997 .

[48]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[49]  W. Hackbusch,et al.  H 2 -matrix approximation of integral operators by interpolation , 2002 .

[50]  P. Colella,et al.  A Finite Difference Domain Decomposition Method Using Local Corrections for the Solution of Poisson's Equation , 1999 .

[51]  P. Strevens Iii , 1985 .

[52]  G. Rodin,et al.  Fast solution method for three-dimensional Stokesian many-particle problems , 2000 .

[53]  W. Henshaw,et al.  Composite overlapping meshes for the solution of partial differential equations , 1990 .

[54]  Steffen Börm,et al.  Hierarchical Quadrature for Singular Integrals , 2005, Computing.

[55]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[56]  Benny G. Johnson,et al.  THE CONTINUOUS FAST MULTIPOLE METHOD , 1994 .

[57]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[58]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[59]  Zydrunas Gimbutas,et al.  A wideband fast multipole method for the Helmholtz equation in three dimensions , 2006, J. Comput. Phys..

[60]  C. R. Anderson A method of local corrections for computing the velocity field due to a distribution of vortex blobs , 1986 .

[61]  Steffen Börm,et al.  H 2-matrix arithmetics in linear complexity , 2022 .

[62]  Barbara Chapman,et al.  Using OpenMP: Portable Shared Memory Parallel Programming (Scientific and Engineering Computation) , 2007 .

[63]  L. Greengard,et al.  A new version of the fast multipole method for screened Coulomb interactions in three dimensions , 2002 .

[64]  Lexing Ying,et al.  A massively parallel adaptive fast-multipole method on heterogeneous architectures , 2009, SC.

[65]  R. Kress Linear Integral Equations , 1989 .

[66]  S. McCormick,et al.  A multigrid tutorial (2nd ed.) , 2000 .

[67]  D. Mavriplis UNSTRUCTURED GRID TECHNIQUES , 1997 .

[68]  L. Greengard,et al.  Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .

[69]  Michael J. Aftosmis,et al.  Accuracy, Adaptive Methods and Complex Geometry , 1996 .

[70]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[71]  L. Greengard,et al.  A new version of the Fast Multipole Method for the Laplace equation in three dimensions , 1997, Acta Numerica.