Matching Misaligned Two-Resolution Metrology Data

Multiresolution metrology devices coexist in today’s manufacturing environment, producing coordinate measurements complementing each other. Typically, the high-resolution (HR) device produces a scarce but accurate data set, whereas the low-resolution (LR) one produces a dense but less accurate data set. Research has shown that combining the two data sets of different resolutions makes better predictions of the geometric features of a manufactured part. A challenge, however, is how to effectively match each HR data point to an LR counterpart that measures approximately the same physical location. A solution to this matching problem appears a prerequisite to a good final prediction. We solved this problem by formulating it as a quadratic integer program, aiming at minimizing the maximum interpoint distance difference among all potential correspondences. Due to the combinatorial nature of the optimization model, solving it to optimality is computationally prohibitive even for a small problem size. We therefore propose a two-stage matching framework capable of solving real-life-sized problems within a reasonable amount of time. This two-stage framework consists of downsampling the full-size problem, solving the downsampled problem to optimality, extending the solution of the downsampled problem to the full-size problem, and refining the solution using iterative local search. Numerical experiments show that the proposed approach outperforms two popular point set registration alternatives, the iterative closest point and coherent point drift methods, using different performance metrics. The numerical results also show that our approach scales much better as the instance size increases, and is robust to the changes in initial misalignment between the two data sets.

[1]  Helmut Pottmann,et al.  Registration of point cloud data from a geometric optimization perspective , 2004, SGP '04.

[2]  Mohammed Bennamoun,et al.  A Multiple View 3D Registration Algorithm with Statistical Error Modeling , 2000 .

[3]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  C. Q. Little,et al.  Registration of range data using a hybrid simulated annealing and iterative closest point algorithm , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[5]  William M. Wells,et al.  Statistical Approaches to Feature-Based Object Recognition , 2004, International Journal of Computer Vision.

[6]  Gary K. L. Tam,et al.  Registration of 3D Point Clouds and Meshes: A Survey from Rigid to Nonrigid , 2013, IEEE Transactions on Visualization and Computer Graphics.

[7]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[8]  lmoyautilisateurs American Society of Mechanical Engineers (ASME) , 2019 .

[9]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[10]  Hiroshi Hasegawa,et al.  Global Iterative Closet Point Using Nested Annealing for Initialization , 2015, KES.

[11]  Eric Mjolsness,et al.  New Algorithms for 2D and 3D Point Matching: Pose Estimation and Correspondence , 1998, NIPS.

[12]  H. Chui,et al.  A feature registration framework using mixture models , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[13]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[14]  Yonghuai Liu,et al.  Improving ICP with easy implementation for free-form surface matching , 2004, Pattern Recognit..

[15]  Haifeng Xia Bayesian Hierarchical Model for Combining Two-resolution Metrology Data , 2010 .

[16]  Hongdong Li,et al.  The 3D-3D Registration Problem Revisited , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[17]  Jan Kautz,et al.  MLMD: Maximum Likelihood Mixture Decoupling for Fast and Accurate Point Cloud Registration , 2015, 2015 International Conference on 3D Vision.

[18]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[19]  R. Burkard Quadratic Assignment Problems , 1984 .

[20]  Vito Renó,et al.  A Modified Iterative Closest Point Algorithm for 3D Point Cloud Registration , 2016, Comput. Aided Civ. Infrastructure Eng..

[21]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[22]  Baba C. Vemuri,et al.  A robust algorithm for point set registration using mixture of Gaussians , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[23]  Yu Ding,et al.  Bayesian hierarchical model for combining misaligned two-resolution metrology data , 2011 .

[24]  Kjell Brunnström,et al.  Genetic algorithms for free-form surface matching , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[25]  David Fofi,et al.  A review of recent range image registration methods with accuracy evaluation , 2007, Image Vis. Comput..

[26]  R. Kimmel,et al.  Hierarchical Framework for Shape Correspondence , 2013 .

[27]  Peter J. Green,et al.  Bayesian alignment using hierarchical models, with applications in protein bioinformatics , 2005 .

[28]  David Windridge,et al.  Globally Optimal 2D-3D Registration from Points or Lines without Correspondences , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[29]  Igor Guskov,et al.  Multi-scale features for approximate alignment of point-based surfaces , 2005, SGP '05.

[30]  James S. Duncan,et al.  A Robust Point Matching Algorithm for Autoradiograph Alignment , 1996, VBC.

[31]  Ashok K. Turuk,et al.  Dead reckoning localisation technique for mobile wireless sensor networks , 2015, IET Wirel. Sens. Syst..

[32]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[33]  Azriel Rosenfeld,et al.  Point pattern matching by relaxation , 1980, Pattern Recognit..

[34]  Helmut Pottmann,et al.  Registration without ICP , 2004, Comput. Vis. Image Underst..

[35]  Jian Zhao,et al.  Accelerated Coherent Point Drift for Automatic Three-Dimensional Point Cloud Registration , 2016, IEEE Geoscience and Remote Sensing Letters.

[36]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Ashok K. Turuk,et al.  Dead Reckoning Localization Technique for Mobile Wireless Sensor Networks , 2015, ArXiv.

[38]  Conrad Sanderson,et al.  Armadillo: a template-based C++ library for linear algebra , 2016, J. Open Source Softw..

[39]  Jiaolong Yang,et al.  Go-ICP: Solving 3D Registration Efficiently and Globally Optimally , 2013, 2013 IEEE International Conference on Computer Vision.

[40]  S. S. Iyengar,et al.  On Computing Mapping of 3D Objects , 2014, ACM Comput. Surv..

[41]  L. Barrenetxea,et al.  Framework for verification of positional tolerances with a 3D non-contact measurement method , 2016 .

[42]  Chia-Hsiang Menq,et al.  Multiple-sensor integration for rapid and high-precision coordinate metrology , 2000, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399).

[43]  Leonidas J. Guibas,et al.  Robust global registration , 2005, SGP '05.

[44]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[45]  Kidiyo Kpalma,et al.  A Rigid Point Set Registration of Remote Sensing Images Based on Genetic Algorithms and Hausdorff Distance , 2012 .

[46]  Edwin R. Hancock,et al.  A unified framework for alignment and correspondence , 2003, Comput. Vis. Image Underst..

[47]  Sethu Vijayakumar,et al.  A Probabilistic Approach to Robust Shape Matching , 2006, 2006 International Conference on Image Processing.

[48]  Anand Rangarajan,et al.  A new point matching algorithm for non-rigid registration , 2003, Comput. Vis. Image Underst..

[49]  David B. Kirk,et al.  Graphics Gems III , 1992 .

[50]  Franz Rendl,et al.  QAPLIB – A Quadratic Assignment Problem Library , 1997, J. Glob. Optim..

[51]  Thomas M. Breuel,et al.  Implementation techniques for geometric branch-and-bound matching methods , 2003, Comput. Vis. Image Underst..

[52]  Kathrin Klamroth,et al.  Discrete and geometric Branch and Bound algorithms for medical image registration , 2012, Ann. Oper. Res..

[53]  Maarten Weyn,et al.  A Survey of Rigid 3D Pointcloud Registration Algorithms , 2014 .

[54]  Nikos Paragios,et al.  Discrete Minimum Distortion Correspondence Problems for Non-rigid Shape Matching , 2011, SSVM.

[55]  Djordje Brujic,et al.  CAD-Based Measurement Path Planning for Free-Form Shapes Using Contact Probes , 2000 .

[56]  Andriy Myronenko,et al.  Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.