Multiregular Point Systems
暂无分享,去创建一个
Jeffrey C. Lagarias | Marjorie Senechal | Nikolai P. Dolbilin | J. Lagarias | M. Senechal | N. Dolbilin
[1] P. Buser. A geometric proof of Bieberbach's theorems on crystallographic groups , 1985 .
[2] Jeffrey C. Lagarias,et al. Geometric Models for Quasicrystals II. Local Rules Under Isometries , 1999, Discret. Comput. Geom..
[3] N. D. Bruijn. Algebraic theory of Penrose''s non-periodic tilings , 1981 .
[4] E. Arthur Robinson,et al. Ergodic Theory of ℤ d Actions: The dynamical theory of tilings and Quasicrystallography , 1996 .
[5] M. Senechal. Quasicrystals and geometry , 1995 .
[6] de Ng Dick Bruijn. Updown generation of Penrose patterns , 1990 .
[7] Charles Radin,et al. The pinwheel tilings of the plane , 1994 .
[8] Leonard S. Charlap,et al. Bieberbach Groups and Flat Manifolds , 1986 .
[9] C. Radin. Global order from local sources , 1991 .
[10] R. Schwarzenberger,et al. N-dimensional crystallography , 1980 .
[11] J. Stoer,et al. Convexity and Optimization in Finite Dimensions I , 1970 .
[12] Jeffrey C. Lagarias,et al. Meyer's concept of quasicrystal and quasiregular sets , 1996 .
[13] Jeffrey C. Lagarias,et al. Geometric Models for Quasicrystals I. Delone Sets of Finite Type , 1999, Discret. Comput. Geom..
[14] E. Robinson,et al. The dynamical properties of Penrose tilings , 1996 .
[15] A. Vince. Periodicity, Quasiperiodicity, and Bieberbach's Theorem on Crystallographic Groups , 1997 .
[16] G. C. Shephard,et al. Tilings and Patterns , 1990 .