Redox active electrolytes in carbon/carbon electrochemical capacitors

[1]  F. Béguin,et al.  Capacitance enhancement of hybrid electrochemical capacitor with asymmetric carbon electrodes configuration in neutral aqueous electrolyte , 2018 .

[2]  P. Poizot,et al.  Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. , 2018 .

[3]  F. Béguin,et al.  Confinement of iodides in carbon porosity to prevent from positive electrode oxidation in high voltage aqueous hybrid electrochemical capacitors , 2017 .

[4]  R. Kühnel,et al.  High-voltage aqueous supercapacitors based on NaTFSI , 2017 .

[5]  Hongfeng Xu,et al.  Synergistic interaction between redox-active electrolytes and functionalized carbon in increasing the performance of electric double-layer capacitors , 2017, Journal of Energy Chemistry.

[6]  G. Stucky,et al.  Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical Capacitor. , 2017, Journal of the American Chemical Society.

[7]  Y. Lui,et al.  Functionalized carbon nanotube based hybrid electrochemical capacitors using neutral bromide redox-active electrolyte for enhancing energy density , 2017 .

[8]  V. Kuzmenko,et al.  Redox enhanced energy storage in an aqueous high-voltage electrochemical capacitor with a potassium bromide electrolyte , 2017 .

[9]  F. Favier,et al.  Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. , 2017, Nature materials.

[10]  K. Fic,et al.  Thiocyanates as attractive redox-active electrolytes for high-energy and environmentally-friendly electrochemical capacitors. , 2017, Physical chemistry chemical physics : PCCP.

[11]  X. Chen,et al.  Redox additives of Na 2 MoO 4 and KI: Synergistic effect and the improved capacitive performances for carbon-based supercapacitors , 2017 .

[12]  A. Bentien,et al.  Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility , 2016, Scientific Reports.

[13]  E. Frąckowiak,et al.  Enhancement of the carbon electrode capacitance by brominated hydroquinones , 2016 .

[14]  John R. Miller,et al.  Engineering electrochemical capacitor applications , 2016 .

[15]  F. Béguin,et al.  Sustainable AC/AC hybrid electrochemical capacitors in aqueous electrolyte approaching the performance of organic systems , 2016 .

[16]  A. Balducci Electrolytes for high voltage electrochemical double layer capacitors: A perspective article , 2016 .

[17]  Volker Presser,et al.  High Performance Hybrid Energy Storage with Potassium Ferricyanide Redox Electrolyte. , 2016, ACS applied materials & interfaces.

[18]  Q. Wang,et al.  Use of pyrocatechol violet as an effective redox additive for highly promoting the supercapacitor performances , 2016 .

[19]  D. Bélanger,et al.  Self-discharge of electrochemical capacitors based on soluble or grafted quinone. , 2016, Physical chemistry chemical physics : PCCP.

[20]  D. Rochefort,et al.  Redox-active electrolyte supercapacitors using electroactive ionic liquids , 2016 .

[21]  V. Presser,et al.  Sub-micrometer Novolac-Derived Carbon Beads for High Performance Supercapacitors and Redox Electrolyte Energy Storage. , 2016, ACS applied materials & interfaces.

[22]  V. Suryanarayanan,et al.  Ethyl viologen dibromide as a novel dual redox shuttle for supercapacitors , 2016 .

[23]  Marc A. Anderson,et al.  High performance hybrid supercapacitors by using para-Benzoquinone ionic liquid redox electrolyte , 2016 .

[24]  E. Frąckowiak,et al.  Hybrid aqueous capacitors with improved energy/power performance , 2015 .

[25]  F. Béguin,et al.  Influence of the iodide/iodine redox system on the self-discharge of AC/AC electrochemical capacitors in salt aqueous electrolyte , 2015 .

[26]  Lei Zhang,et al.  A review of electrolyte materials and compositions for electrochemical supercapacitors. , 2015, Chemical Society reviews.

[27]  G. Stucky,et al.  High Energy Density Aqueous Electrochemical Capacitors with a KI-KOH Electrolyte. , 2015, ACS applied materials & interfaces.

[28]  Xiulei Ji,et al.  Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge , 2015, Nature Communications.

[29]  Pierre-Louis Taberna,et al.  In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. , 2015, Nature materials.

[30]  E. Lust,et al.  Supercapacitors Based on Mixture of Room Temperature Ionic Liquids Containing Specifically Adsorbed Iodide Anions , 2015 .

[31]  Elzbieta Frackowiak,et al.  Redox-active electrolyte for supercapacitor application. , 2014, Faraday discussions.

[32]  E. Frąckowiak,et al.  Electrochemical capacitors as attractive power sources , 2014 .

[33]  Pierre-Louis Taberna,et al.  Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons. , 2014, Journal of the American Chemical Society.

[34]  F. Béguin,et al.  Effect of accelerated ageing on the performance of high voltage carbon/carbon electrochemical capacitors in salt aqueous electrolyte , 2014 .

[35]  H. Bai,et al.  Mechanism investigation and suppression of self-discharge in active electrolyte enhanced supercapacitors , 2014 .

[36]  V. Presser,et al.  Carbons and Electrolytes for Advanced Supercapacitors , 2014, Advanced materials.

[37]  E. Frąckowiak,et al.  The effect of halide ion concentration on capacitor performance , 2014, Journal of Applied Electrochemistry.

[38]  A. Wokaun,et al.  A reliable determination method of stability limits for electrochemical double layer capacitors , 2013 .

[39]  John R. Miller,et al.  Market and Applications of Electrochemical Capacitors , 2013 .

[40]  M. Ishikawa,et al.  Non-aqueous electrochemical capacitor utilizing electrolytic redox reactions of bromide species in ionic liquid , 2012 .

[41]  R. Menéndez,et al.  Mechanisms of Energy Storage in Carbon-Based Supercapacitors Modified with a Quinoid Redox-Active Electrolyte , 2011 .

[42]  E. Lust,et al.  Physical and electrochemical characteristics of supercapacitors based on carbide derived carbon electrodes in aqueous electrolytes , 2011 .

[43]  Partha Sarathi Guin,et al.  Electrochemical Reduction of Quinones in Different Media: A Review , 2011 .

[44]  Yury Gogotsi,et al.  Carbide‐Derived Carbons – From Porous Networks to Nanotubes and Graphene , 2011 .

[45]  R. Menéndez,et al.  Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. , 2011, Angewandte Chemie.

[46]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[47]  P. Krishnan The effect of concentration in electrochemical oxidation of thiocyanate on platinum electrode , 2007 .

[48]  Wendy G. Pell,et al.  Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes , 2004 .

[49]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[50]  D. Grahame,et al.  Oxoammonium cation intermediate in the nitroxide-catalyzed dismutation of superoxide. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[51]  A. Bard,et al.  Standard Potentials in Aqueous Solution , 1985 .

[52]  E. Duoss,et al.  Three-dimensional carbon architectures for electrochemical capacitors. , 2018, Journal of colloid and interface science.

[53]  G. Chen Dissolved redox species for the improvement of the performance of supercapacitors , 2017 .

[54]  E. Frąckowiak,et al.  Interfacial Redox Phenomena for Enhanced Aqueous Supercapacitors , 2015 .

[55]  E. Lust,et al.  A Type High Capacitance Supercapacitor Based on Mixed Room Temperature Ionic Liquids Containing Specifically Adsorbed Iodide Anions , 2014 .

[56]  S. T. Senthilkumar,et al.  Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte , 2013 .

[57]  E. Lust,et al.  Influence of Room Temperature Ionic Liquid Anion Chemical Composition and Electrical Charge Delocalization on the Supercapacitor Properties , 2012 .

[58]  E. Frąckowiak,et al.  Alkali metal iodide/carbon interface as a source of pseudocapacitance , 2011 .

[59]  Grzegorz Lota,et al.  Striking capacitance of carbon/iodide interface , 2009 .

[60]  F. Albert Cotton,et al.  Advanced Inorganic Chemistry , 1999 .

[61]  Allen J. Bard,et al.  Electroanalytical Chemistry: A Series of Advances , 1974 .

[62]  L. M. Mukherjee Standard potential of the ferrocene-ferricinium electrode in pyridine. Evaluation of proton medium effect , 1972 .