Antigenic Properties of the Human Immunodeficiency Virus Envelope during Cell-Cell Fusion

ABSTRACT Human immunodeficiency virus (HIV) fusion and entry involves sequential interactions between the viral envelope protein, gp120, cell surface CD4, and a G-protein-coupled coreceptor. Each interaction creates an intermediate gp120 structure predicted to display distinct antigenic features, including key functional domains for viral entry. In this study, we examined the disposition of these features during the fusion of HeLa cells expressing either HIVHXB2 envelope (Env cells) or CXCR4 and CD4 (target cells). Cell-cell fusion, indicated by cytoplasmic dye transfer, was allowed to progress for various times and then arrested. The cells were then examined for reactivity with antibodies directed against receptor-induced epitopes on gp120. Analyses of cells arrested by cooling to 4°C revealed that antibodies against the CD4-induced coreceptor-binding domain, i.e., 17b, 48d, and CG10, faintly react with Env cells even in the absence of target cell or soluble CD4 (sCD4) interactions. Such reactivity increased after exposure to sCD4 but remained unchanged during fusion with target cells and was not intensified at the Env-target cell interface. Notably, the antibodies did not react with Env cells when treated with a covalent cross-linker either alone or during fusion with target cells. Immunoreactivity could not be promoted or otherwise altered on either temperature arrested or cross-linked cells by preventing coreceptor interactions or by using a 17b Fab. In comparison, two other gp120-CD4 complex-dependent antibodies against epitopes outside the coreceptor domain, 8F101 and A32, exhibited a different pattern of reactivity. These antibodies reacted with the Env-target cell interface only after 30 min of cocultivation, concurrent with the first visible transfer of cytoplasmic dye from Env to target cells. At later times, the staining surrounded entire syncytia. Such binding was entirely dependent on the formation of gp120-CD4-CXCR4 tricomplexes since staining was absent with SDF-treated or coreceptor-negative target cells. Overall, these studies show that access to the CD4-induced coreceptor-binding domain on gp120 is largely blocked at the fusing cell interface and is unlikely to represent a target for neutralizing antibodies. However, new epitopes are presented on intermediate gp120 structures formed as a result of coreceptor interactions. Such findings have important implications for HIV vaccine approaches based on conformational alterations in envelope structures.

[1]  G. Melikyan,et al.  Evidence That the Transition of HIV-1 Gp41 into a Six-Helix Bundle, Not the Bundle Configuration, Induces Membrane Fusion , 2000, The Journal of cell biology.

[2]  R. Blumenthal,et al.  Varying effects of temperature, Ca2+ and cytochalasin on fusion activity mediated by human immunodeficiency virus type 1 and type 2 glycoproteins , 2000, FEBS letters.

[3]  J. Binley,et al.  A Recombinant Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Complex Stabilized by an Intermolecular Disulfide Bond between the gp120 and gp41 Subunits Is an Antigenic Mimic of the Trimeric Virion-Associated Structure , 2000, Journal of Virology.

[4]  K. Salzwedel,et al.  Sequential CD4-Coreceptor Interactions in Human Immunodeficiency Virus Type 1 Env Function: Soluble CD4 Activates Env for Coreceptor-Dependent Fusion and Reveals Blocking Activities of Antibodies against Cryptic Conserved Epitopes on gp120 , 2000, Journal of Virology.

[5]  D. Kabat,et al.  Roles of CD4 and Coreceptors in Binding, Endocytosis, and Proteolysis of gp120 Envelope Glycoproteins Derived from Human Immunodeficiency Virus Type 1* , 1999, The Journal of Biological Chemistry.

[6]  D. Littman,et al.  Fusion-competent vaccines: broad neutralization of primary isolates of HIV. , 1999, Science.

[7]  N. Tarasova,et al.  Spontaneous and Ligand-induced Trafficking of CXC-Chemokine Receptor 4* , 1998, The Journal of Biological Chemistry.

[8]  Ying Sun,et al.  A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. , 1998, Science.

[9]  Lawrence M. Lifshitz,et al.  Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. , 1998, Science.

[10]  J. Sodroski,et al.  CD4-Induced Conformational Changes in the Human Immunodeficiency Virus Type 1 gp120 Glycoprotein: Consequences for Virus Entry and Neutralization , 1998, Journal of Virology.

[11]  P. S. Kim,et al.  HIV Entry and Its Inhibition , 1998, Cell.

[12]  J. Sodroski,et al.  Analysis of the interaction of the human immunodeficiency virus type 1 gp120 envelope glycoprotein with the gp41 transmembrane glycoprotein , 1997, Journal of virology.

[13]  D. Weissman,et al.  Macrophage-tropic HIV and SIV envelope proteins induce a signal through the CCR5 chemokine receptor , 1997, Nature.

[14]  C. Broder,et al.  Enhancement of human immunodeficiency virus type 1 envelope-mediated fusion by a CD4-gp120 complex-specific monoclonal antibody , 1997, Journal of virology.

[15]  S. Harrison,et al.  Atomic structure of the ectodomain from HIV-1 gp41 , 1997, Nature.

[16]  A. Trkola,et al.  Neutralization of the human immunodeficiency virus type 1 primary isolate JR-FL by human monoclonal antibodies correlates with antibody binding to the oligomeric form of the envelope glycoprotein complex , 1997, Journal of virology.

[17]  Joseph Sodroski,et al.  CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5 , 1996, Nature.

[18]  P. Bugelski,et al.  Characterization of CD4-gp120 activation intermediates during human immunodeficiency virus type 1 syncytium formation. , 1996, AIDS research and human retroviruses.

[19]  C. Broder,et al.  CC CKR5: A RANTES, MIP-1α, MIP-1ॆ Receptor as a Fusion Cofactor for Macrophage-Tropic HIV-1 , 1996, Science.

[20]  Paul E. Kennedy,et al.  HIV-1 Entry Cofactor: Functional cDNA Cloning of a Seven-Transmembrane, G Protein-Coupled Receptor , 1996, Science.

[21]  R. Pal,et al.  Covalently crosslinked complexes of human immunodeficiency virus type 1 (HIV-1) gp120 and CD4 receptor elicit a neutralizing immune response that includes antibodies selective for primary virus isolates. , 1996, Virology.

[22]  J. Sodroski,et al.  Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein , 1996, Journal of virology.

[23]  D. Littman,et al.  Studies of HIV‐1 envelope glycoprotein‐mediated fusion using a simple fluorescence assay , 1996, AIDS.

[24]  A. Trkola,et al.  Cross-clade neutralization of primary isolates of human immunodeficiency virus type 1 by human monoclonal antibodies and tetrameric CD4-IgG , 1995, Journal of virology.

[25]  J. Sodroski,et al.  Involvement of the V1/V2 variable loop structure in the exposure of human immunodeficiency virus type 1 gp120 epitopes induced by receptor binding , 1995, Journal of virology.

[26]  R. Pal,et al.  Monoclonal antibodies raised against covalently crosslinked complexes of human immunodeficiency virus type 1 gp120 and CD4 receptor identify a novel complex-dependent epitope on gp 120. , 1995, Virology.

[27]  R. M. Hendry,et al.  Neutralization of primary HIV‐1 isolates by anti‐envelope monoclonal antibodies , 1995, AIDS.

[28]  Q. Sattentau,et al.  Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer , 1995, The Journal of experimental medicine.

[29]  S. Günther,et al.  Temperature dependence of cell-cell fusion induced by the envelope glycoprotein of human immunodeficiency virus type 1 , 1995, Journal of virology.

[30]  J. Moore,et al.  Exploration of antigenic variation in gp120 from clades A through F of human immunodeficiency virus type 1 by using monoclonal antibodies , 1994, Journal of virology.

[31]  J. Sodroski,et al.  Characterization of conserved human immunodeficiency virus type 1 gp120 neutralization epitopes exposed upon gp120-CD4 binding , 1993, Journal of virology.

[32]  P. Bugelski,et al.  Physicochemical dissociation of CD4-mediated syncytium formation and shedding of human immunodeficiency virus type 1 gp120 , 1993, Journal of virology.

[33]  T. Oas,et al.  A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[34]  M. Emerman,et al.  Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene , 1992, Journal of virology.

[35]  J. Sodroski,et al.  Human immunodeficiency virus type 1 gp120 envelope glycoprotein regions important for association with the gp41 transmembrane glycoprotein , 1991, Journal of virology.

[36]  J. Farber,et al.  Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. , 1999, Annual review of immunology.