Wheat curl mite and dry bulb mite: untangling a taxonomic conundrum through a multidisciplinary approach

Two economically important eriophyoid mites, Aceria tosichella (wheat curl mite; WCM) and Aceria tulipae (dry bulb mite; DBM), were frequently confounded in the world literature until the late 20th Century. Their morphological similarity and ambiguous data from plant-transfer and virus-transmission trials contributed to this confusion. Until recently, there was a general lack of knowledge about the existence of species complexes and it was not possible to accurately genotype tested mites. In the present study, two WCM genotypes of divergent host specificity (MT-1 and MT-2) and one DBM genotype were tested for the acceptance of Poaceae, Amarylidaceae, and Liliaceae species that were reported or suspected as hosts of WCM or DBM. The MT-1 lineage colonized all tested plants. Onion- and garlic-associated DBM populations did not colonize tulip and wild garlic, suggesting that host-acceptance variability exists within A. tulipae s.l. Morphometric analysis did not discriminate closely-related MT-1 and MT-2 genotypes but completely separated both WCM genotypes from DBM based on the larger overall body size of the latter. Three morphological traits combined to discriminate between the DBM and MT-1 genotypes, both of which can infest Amarylidaceae bulbs. In total, these combined DNA sequence, host-acceptance, morphometrical results unambiguously separated two WCM and one DBM genotypes. Similar studies on additional lineages of both WCM and DBM should ultimately dispel previous taxonomic confusion between these two species. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111, 421–436.

[1]  Mark B. Schultz,et al.  Phylogenetic analyses reveal extensive cryptic speciation and host specialization in an economically important mite taxon. , 2013, Molecular phylogenetics and evolution.

[2]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[3]  D. Harris,et al.  Cryptic diversity within the Moroccan endemic day geckos Quedenfeldtia (Squamata: Gekkonidae): a multidisciplinary approach using genetic, morphological and ecological data , 2012 .

[4]  D. Posada jModelTest: phylogenetic model averaging. , 2008, Molecular biology and evolution.

[5]  Fotini A. Koutroumpa,et al.  Evolutionary relationships within European Monochamus (Coleoptera: Cerambycidae) highlight the role of altitude in species delineation , 2013 .

[6]  Edward W. Baker,et al.  AGS volume 84 issue 1 Cover and Back matter , 1975, The Journal of Agricultural Science.

[7]  J. S. Morgante,et al.  Evolutionary history of bulldog bats (genus Noctilio): recent diversification and the role of the Caribbean in Neotropical biogeography , 2013 .

[8]  H. Lumbsch,et al.  Miocene divergence, phenotypically cryptic lineages, and contrasting distribution patterns in common lichen-forming fungi (Ascomycota: Parmeliaceae) , 2012 .

[9]  J. Amrine,et al.  1.6.3 Preparation, mounting and descriptive study of eriophyoid mites , 1996 .

[10]  M. Sabelis,et al.  Eriophyoid Mites. Their Biology, Natural Enemies and Control. , 1996 .

[11]  R. Ochoa,et al.  Adventive eriophyoid mites: a global review of their impact, pathways, prevention and challenges , 2010, Experimental and Applied Acarology.

[12]  S. Richter,et al.  An integrative approach to species delineation incorporating different species concepts: a case study of Limnadopsis (Branchiopoda: Spinicaudata) , 2011 .

[13]  H. H. Keifer Eriophyid Studies XVI. , 1940 .

[14]  K. Winemiller,et al.  Evolutionary convergence in Neotropical cichlids and Nearctic centrarchids: evidence from morphology, diet, and stable isotope analysis , 2013 .

[15]  J. Amrine,et al.  Catalog of the Eriophyoidea (Acarina: Prostigmata) of the world. , 1996 .

[16]  R. I. Hill,et al.  Ecologically relevant cryptic species in the highly polymorphic Amazonian butterfly Mechanitis mazaeus s.l. (Lepidoptera: Nymphalidae; Ithomiini) , 2012 .

[17]  R. T. Brumfield,et al.  Rampant polyphyly indicates cryptic diversity in a clade of Neotropical flycatchers (Aves: Tyrannidae) , 2013 .

[18]  Danuta K. Knihinicki,et al.  The occurrence of Aceria tulipae (Keifer) and Aceria tosichella Keifer in Australia (Acari: Eriophyidae) , 2004 .

[19]  M. Knapp,et al.  Phytophagous and fungivorous mites (Acari: Prostigmata, Astigmata) from Peru , 2012 .

[20]  C. Varotto,et al.  Application of the unified species concept reveals distinct lineages for disjunct endemics of the Brassica repanda (Brassicaceae) complex , 2012 .

[21]  David J. Lohman,et al.  Cryptic species as a window on diversity and conservation. , 2007, Trends in ecology & evolution.

[22]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[23]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[24]  J. Andersen,et al.  Discovery of cryptic species among North American pine‐feeding Chionaspis scale insects (Hemiptera: Diaspididae) , 2011 .

[25]  J. Slykhuis The relation of Aceria tulipae K. to streak mosaic and other chronic symptoms of wheat. , 1953 .

[26]  David C. Tank,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: , 2009 .

[27]  D. Reid,et al.  Mosaics in the mangroves: allopatric diversification of tree-climbing mudwhelks (Gastropoda: Potamididae: Cerithidea) in the Indo-West Pacific , 2013 .

[28]  A. Skoracka,et al.  The wheat curl mite Aceria tosichella (Acari: Eriophyoidea) is a complex of cryptic lineages with divergent host ranges: evidence from molecular and plant bioassay data , 2013 .

[29]  M. Braby,et al.  The subspecies concept in butterflies: has its application in taxonomy and conservation biology outlived its usefulness? , 2012 .

[30]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[31]  J. Amrine,et al.  Taxonomic separation of similar species of eriophyid mites, Aceria tulipae keif. and A. tritici sp. n. (Acarina, eriophyoidea) - vectors of the viruses of onions and wheat , 1996 .

[32]  J. Höglund,et al.  Phylogeography of willow grouse (Lagopus lagopus) in the Arctic: taxonomic discordance as inferred from molecular data , 2013 .

[33]  M. Dabert,et al.  The cereal rust mite Abacarus hystrix (Acari: Eriophyoidea) is a complex of species: evidence from mitochondrial and nuclear DNA sequences , 2009, Bulletin of Entomological Research.

[34]  A. A. Abdallah,et al.  Studies on the wheat curl mite, Aceria tulipae Keifer (Eriophyidae), in Egypt , 2013 .

[35]  C. Schneider,et al.  AFLP analysis shows high incongruence between genetic differentiation and morphology‐based taxonomy in a widely distributed tortoise , 2013 .

[36]  J. Engler,et al.  Multiple dispersal out of Anatolia: biogeography and evolution of oriental green lizards , 2013 .

[37]  Gary L. Hein,et al.  Genetic Characterization of North American Populations of the Wheat Curl Mite and Dry Bulb Mite , 2012, Journal of economic entomology.

[38]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[39]  D. Navia,et al.  Cryptic species within the wheat curl mite Aceria tosichella (Keifer) (Acari : Eriophyoidea), revealed by mitochondrial, nuclear and morphometric data , 2012, Invertebrate Systematics.

[40]  E. D. Lillo,et al.  Recommended procedures and techniques for morphological studies of Eriophyoidea (Acari: Prostigmata) , 2010, Experimental and Applied Acarology.

[41]  G. S. Batchelor The eriophyid mites of the state of Washington. , 1952 .

[42]  R. Tibshirani,et al.  A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. , 2009, Biostatistics.

[43]  P. Debnath,et al.  Garlic mite, Aceria tulipae (Keifer) (Acari: Eriophyoidea) – a threat for garlic in West Bengal, India , 2013 .

[44]  A. Vujić,et al.  Genetic and phenotypic diversity patterns in Merodon albifrons Meigen, 1822 (Diptera: Syrphidae): evidence of intraspecific spatial and temporal structuring , 2013 .

[45]  M. Dabert,et al.  Glaucalges tytonis sp. n. (Analgoidea, Xolalgidae) from the barn owl Tyto alba (Strigiformes, Tytonidae): compiling morphology with DNA barcode data for taxon descriptions in mites (Acari) , 2008, Zootaxa.

[46]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[47]  M. Penna,et al.  Bioacoustic and genetic divergence in a frog with a wide geographical distribution , 2013 .

[48]  M. Byrne,et al.  Cryptic divergent lineages of Pultenaea pauciflora M.B. Scott (Fabaceae: Mirbelieae) exhibit different evolutionary history , 2013 .

[49]  Bryan C. Carstens,et al.  The carnivorous plant described as Sarracenia alata contains two cryptic species , 2013 .

[50]  A. Hoffmann,et al.  Molecular markers indicate that the wheat curl mite, Aceria tosichella Keifer, may represent a species complex in Australia , 2009, Bulletin of Entomological Research.

[51]  D. Fontaneto,et al.  Integrating DNA and morphological taxonomy to describe diversity in poorly studied microscopic animals: new species of the genus Abrochtha Bryce, 1910 (Rotifera: Bdelloidea: Philodinavidae) , 2011 .

[52]  M. Dabert,et al.  A new feather mite species of the genus Proctophyllodes Robin , 1877 ( Astigmata : Proctophyllodidae ) from the Long-tailed Tit Aegithalos caudatus ( Passeriformes : Aegithalidae ) — morphological description with DNA barcode data , 2012 .

[53]  M. Chase,et al.  A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae , 2009 .

[54]  Nai-fa Liu,et al.  Intraspecific molecular phylogeny and phylogeography of the Meriones meridianus (Rodentia: Cricetidae) complex in northern China reflect the processes of desertification and the Tianshan Mountains uplift , 2013 .

[55]  B. Gardiner,et al.  Linnean Society of London , 1956, Nature.

[56]  A. Couloux,et al.  Hidden species diversity of Australian burrowing snakes (Ramphotyphlops) , 2013 .

[57]  D. Harris,et al.  When cryptic diversity blurs the picture: a cautionary tale from Iberian and North African Podarcis wall lizards , 2011 .

[58]  W. Frost,et al.  3.2.9 Grasses , 1996 .

[59]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[60]  F. Bonhomme,et al.  The south‐eastern house mouse Mus musculus castaneus (Rodentia: Muridae) is a polytypic subspecies , 2012 .

[61]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[62]  K. Hornik,et al.  Unbiased Recursive Partitioning: A Conditional Inference Framework , 2006 .

[63]  R. J. Robins,et al.  The Carnivorous Plants , 1989 .

[64]  D. Tautz,et al.  An evaluation of LSU rDNA D1-D2 sequences for their use in species identification , 2007, Frontiers in Zoology.

[65]  James B. Johnson,et al.  Parallel evolution in courtship songs of North American and European green lacewings (Neuroptera: Chrysopidae) , 2012 .

[66]  D. Navia,et al.  Wheat curl mite, Aceria tosichella, and transmitted viruses: an expanding pest complex affecting cereal crops , 2013, Experimental and Applied Acarology.