Ionic Substitutions in Biphasic Hydroxyapatite and β‐Tricalcium Phosphate Mixtures: Structural Analysis by Rietveld Refinement

The structural information on the influence of ionic additions in biphasic (hydroxyapatite (HAP) and β-tricalciumphosphate (β-TCP)) mixtures ranging from single ionic substitutions to combined ionic substitutions of most of the essential ions embedded in biological apatite was analyzed through the Rietveld refinement technique. The results have proved that the determined quantitative phase composition of HAP and β-TCP in biphasic mixtures was dependent on the initial calcium (Ca) deficiency of the precursor powders precipitated from the different molar concentrations used in the synthesis. The substitution of cations (Na + , Mg 2+ , and K + ) improved the stabilization of the β-TCP structure whereas anions (F - and Cl - ) were found incorporated at the OH site of the HAP phase. Rietveld analysis of X-ray powder diffraction data from the present study proved to be a powerful technique to describe the position and occupancy of certain ions like Mg 2+ and Cl - in the biphasic mixtures. However, it has also shown limitations in tracking back other ions like Na + , K + , and F - , which require the use of other complementary characterization methods.

[1]  Klaas de Groot,et al.  Bioceramics of Calcium Phosphate , 2017 .

[2]  J. Ferreira,et al.  Rietveld structure and in vitro analysis on the influence of magnesium in biphasic (hydroxyapatite and beta-tricalcium phosphate) mixtures. , 2008, Journal of biomedical materials research. Part B, Applied biomaterials.

[3]  J. Ferreira,et al.  Synthesis and thermal stability of potassium substituted hydroxyapatites and hydroxyapatite/β-tricalciumphosphate mixtures , 2007 .

[4]  F. Goetz-Neunhoeffer,et al.  Investigation of the β'- to α-phase transformation temperature of (Ca1−xMgx)3(PO4)2solid solutions , 2007 .

[5]  S. Bhaduri,et al.  Preparation of Zn-doped β-tricalcium phosphate (β-Ca3(PO4)2) bioceramics , 2007 .

[6]  J. Ferreira,et al.  Fluorine-substituted hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. , 2007, Acta biomaterialia.

[7]  M. Gazzano,et al.  Strontium-substituted hydroxyapatite nanocrystals. , 2007 .

[8]  M. Fleet,et al.  Coupled substitution of type A and B carbonate in sodium-bearing apatite. , 2007, Biomaterials.

[9]  J. Ferreira,et al.  Formation of Strontium‐Stabilized β‐Tricalcium Phosphate from Calcium‐Deficient Apatite , 2006 .

[10]  A. Rebelo,et al.  Novel synthesis and structural characterization of fluorine and chlorine co-substituted hydroxyapatites. , 2006, Journal of inorganic biochemistry.

[11]  J. Ferreira,et al.  Characterization and mechanical performance of the Mg-stabilized β-Ca3(PO4)2 prepared from Mg-substituted Ca-deficient apatite , 2006 .

[12]  A. Roosen,et al.  Quantitative Analysis of Crystalline and Amorphous Phases in Glass–Ceramic Composites Like LTCC by the Rietveld Method , 2006 .

[13]  J. Ferreira,et al.  Synthesis of hydroxy-chlorapatites solid solutions , 2006 .

[14]  S. Kannan,et al.  Synthesis and Mechanical Performance of Biological-like Hydroxyapatites , 2006 .

[15]  F. Goetz-Neunhoeffer,et al.  Refined ettringite (Ca6Al2(SO4)3(OH)12∙26H2O) structure for quantitative X-ray diffraction analysis , 2006, Powder Diffraction.

[16]  D. Massiot,et al.  Effect of Sodium Doping in β-Tricalcium Phosphate on Its Structure and Properties , 2006 .

[17]  J. Ferreira,et al.  Synthesis and thermal stability of sodium, magnesium co-substituted hydroxyapatites , 2006 .

[18]  José M.F. Ferreira,et al.  Effect of Ca/P ratio of precursors on the formation of different calcium apatitic ceramics—An X-ray diffraction study , 2005 .

[19]  J. Rocha,et al.  Synthesis and characterization of magnesium substituted biphasic mixtures of controlled hydroxyapatite/β-tricalcium phosphate ratios , 2005 .

[20]  M. Sayer,et al.  Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system. , 2005, Biomaterials.

[21]  F. Müller,et al.  Influence of magnesium doping on the phase transformation temperature of beta-TCP ceramics examined by Rietveld refinement. , 2005, Biomaterials.

[22]  S. Kannan,et al.  In Situ Formation and Characterization of Flourine-Substituted Biphasic Calcium Phosphate Ceramics of Varied F-HAP/β-TCP Ratios , 2005 .

[23]  M. Vallet‐Regí,et al.  Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants , 2005 .

[24]  A. Tas,et al.  Synthesis of Calcium Hydroxyapatite‐Tricalcium Phosphate (HA‐TCP) Composite Bioceramic Powders and Their Sintering Behavior , 2005 .

[25]  Hyoun‐Ee Kim,et al.  Strontium substituted calcium phosphate biphasic ceramics obtained by a powder precipitation method , 2004, Journal of materials science. Materials in medicine.

[26]  K. Byrappa,et al.  Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method. , 2004, Biomaterials.

[27]  A. Salah,et al.  Synthesis of potassium chloroapatites, IR, X‐ray and Raman studies , 2004 .

[28]  Hyoun‐Ee Kim,et al.  Pressureless sintering and mechanical and biological properties of fluor-hydroxyapatite composites with zirconia , 2003 .

[29]  M. Yashima,et al.  Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction , 2003 .

[30]  K. Gross,et al.  Influence of fluorine in the synthesis of apatites. Synthesis of solid solutions of hydroxy-fluorapatite. , 2003, Biomaterials.

[31]  K. Gross,et al.  Structural and Chemical Analysis of Well-Crystallized Hydroxyfluorapatites , 2003 .

[32]  S. R. Kim,et al.  Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. , 2003, Biomaterials.

[33]  J. P. LeGeros,et al.  Biphasic calcium phosphate bioceramics: preparation, properties and applications , 2003, Journal of materials science. Materials in medicine.

[34]  W. Bonfield,et al.  Preparation and characterization of magnesium/carbonate co-substituted hydroxyapatites , 2002, Journal of materials science. Materials in medicine.

[35]  D. Bernache-Assollant,et al.  Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. , 2002, Biomaterials.

[36]  T. Webster,et al.  Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure. , 2002, Journal of biomedical materials research.

[37]  Shuji Oishi,et al.  Effect of Metal Ions of Chlorapatites on the Topotaxial Replacement by Hydroxyapatite under Hydrothermal Conditions , 2000 .

[38]  A. Salah,et al.  Localization of potassium in substituted lead hydroxyapatite: Pb9.30K0.60(PO4)6(OH)1.20 by X-ray diffraction , 2000 .

[39]  A. Salah,et al.  Sodium and carbonate distribution in substituted calcium hydroxyapatite , 2000 .

[40]  A. Tas Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids , 2000 .

[41]  M. Trunec,et al.  Kinetics of thermal decomposition of hydroxyapatite bioceramics , 1999 .

[42]  J.C. Elliott,et al.  Rietveld refinement of the crystallographic structure of human dental enamel apatites , 1999 .

[43]  A. Flynn,et al.  The effect of moderately and severely restricted dietary magnesium intakes on bone composition and bone metabolism in the rat , 1999, British Journal of Nutrition.

[44]  A. Bigi,et al.  Nanocrystals of magnesium and fluoride substituted hydroxyapatite. , 1998, Journal of inorganic biochemistry.

[45]  K. Zierold,et al.  Potassium is Involved in Apatite Biomineralization , 1998, Journal of dental research.

[46]  F. Lin,et al.  Preparation of high-temperature stabilized beta-tricalcium phosphate by heating deficient hydroxyapatite with Na4P2O7 x 10H2O addition. , 1998, Biomaterials.

[47]  R. Rude Magnesium Deficiency: A Cause of Heterogenous Disease in Humans , 1998 .

[48]  K. Cashman,et al.  The effect of dietary sodium intake on biochemical markers of bone metabolism in young women , 1998, British Journal of Nutrition.

[49]  A. Bigi,et al.  Chemical and structural characterization of the mineral phase from cortical and trabecular bone. , 1997, Journal of inorganic biochemistry.

[50]  P. Schlesinger,et al.  Characterization of the Osteoclast Ruffled Border Chloride Channel and Its Role in Bone Resorption* , 1997, The Journal of Biological Chemistry.

[51]  M. Kakihana,et al.  Hydroxyapatite ceramics with selected sintering additives. , 1997, Biomaterials.

[52]  M. Gazzano,et al.  Isomorphous substitutions in β-tricalcium phosphate: The different effects of zinc and strontium , 1997 .

[53]  I. Rehman,et al.  Preparation and characterization of fluoride-substituted apatites , 1997, Journal of materials science. Materials in medicine.

[54]  F. Korkusuz,et al.  An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics , 1997, Journal of materials science. Materials in medicine.

[55]  Y. Suyama,et al.  Sodium excretion in relation to calcium and hydroxyproline excretion in a healthy Japanese population. , 1996, The American journal of clinical nutrition.

[56]  R. Verbeeck,et al.  Effect of Heating on the Constitution of Na+- and CO32--Containing Apatites Obtained by the Hydrolysis of Monetite , 1994 .

[57]  B. Raveau,et al.  Redetermination of the β‐Ca2P2O7 structure , 1993 .

[58]  R. Verbeeck,et al.  Stoichiometry of Na+- and CO32--containing apatites obtained by hydrolysis of monetite , 1993 .

[59]  T. Chaki,et al.  Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate , 1993 .

[60]  S. Radin,et al.  Determination of the Ca/P ratio in calcium-deficient hydroxyapatite using X-ray diffraction analysis , 1993 .

[61]  R. W. Cheary,et al.  A fundamental parameters approach to X-ray line-profile fitting , 1992 .

[62]  R Z LeGeros,et al.  Calcium phosphates in oral biology and medicine. , 1991, Monographs in oral science.

[63]  H. Höhling,et al.  Microprobe analyses of the potassium-calcium distribution relationship in predentine. , 1991, Scanning microscopy.

[64]  J. Lucas Flourine in the natural environment , 1988 .

[65]  A. Osaka,et al.  Hydroxyapatite crystal growth on calcium hydroxyapatite ceramics , 1988 .

[66]  C. Klein,et al.  Interaction of biodegradable beta-whitlockite ceramics with bone tissue: an in vivo study. , 1985, Biomaterials.

[67]  M. Ogino,et al.  Difference of bond bonding behavior among surface active glasses and sintered apatite. , 1984, Journal of biomedical materials research.

[68]  J. Wergedal,et al.  Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells. , 1983, Science.

[69]  H. Aoki,et al.  Dense polycrystalline β-tricalcium phosphate for prosthetic applications , 1982 .

[70]  I. D. Brown,et al.  INORGANIC CRYSTAL STRUCTURE DATABASE , 1981 .

[71]  W. E. Brown,et al.  Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. II. Refinement of Mg-containing β-Ca3(PO4)2 , 1977 .

[72]  W. E. Brown,et al.  The crystal structure of a-Ca3(PO4)2 , 1977 .

[73]  J. Bobick,et al.  Hydroxylapatite synthesis and characterization in dense polycrystalline form , 1976 .

[74]  W. E. Brown,et al.  Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. The crystal structure of pure β-Ca3(PO4)2 , 1974 .

[75]  C. Suelter Enzymes activated by monovalent cations. , 1970, Science.

[76]  A. S. Posner,et al.  Crystal Structure of Hydroxyapatite , 1964, Nature.

[77]  W. Neuman,et al.  THE CHEMICAL DYNAMICS OF BONE MINERAL , 1959 .

[78]  J. Ando Tricalcium Phosphate and its Variation , 1958 .

[79]  J. Ferreira,et al.  Effect of sodium addition on the preparation of hydroxyapatites and biphasic ceramics , 2008 .

[80]  J. Ferreira,et al.  Synthesis and mechanical behaviour of chlorapatite and chlorapatite/β-TCP composites , 2007 .

[81]  J. M. Ferreira,et al.  Synthesis and Thermal Stability of Hydroxyapatite−β-Tricalcium Phosphate Composites with Cosubstituted Sodium, Magnesium, and Fluorine , 2006 .

[82]  Anna Tampieri,et al.  Biomimetic Mg- and Mg,CO3-substituted hydroxyapatites: synthesis characterization and in vitro behaviour , 2006 .

[83]  H. Koyama,et al.  Stimulation by low concentrations of fluoride of the proliferation and alkaline phosphatase activity of human dental pulp cells in vitro. , 1999, Archives of oral biology.

[84]  G. Daculsi,et al.  Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. , 1998, Biomaterials.

[85]  G. Daculsi,et al.  Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials. , 1997, International review of cytology.

[86]  Olivier Gauthier,et al.  Macroporous biphasic calcium phosphate ceramics , 1997 .

[87]  A. Ruys,et al.  Sintering effects on the strength of hydroxyapatite. , 1995, Biomaterials.

[88]  J. Elliott,et al.  Structure and chemistry of the apatites and other calcium orthophosphates , 1994 .

[89]  V. Orlovskii,et al.  The structural transformations of hydroxyapatite in the temperature range 100-1600°C. , 1990 .

[90]  R. Nurse,et al.  220. High-temperature phase equilibria in the system dicalcium silicate–tricalcium phosphate , 1959 .