Graphitization of amorphous carbons: A comparative study of interatomic potentials

Abstract We perform a comparative study of six common carbon interatomic potentials: Tersoff, REBO-II, ReaxFF, EDIP, LCBOP-I and COMB3. To ensure fair comparison, all the potentials are used as implemented in the molecular dynamics package LAMMPS. Using the liquid quenching method we generate amorphous carbons at different densities, and subsequently anneal at high temperature. The amorphous carbon system provides a critical test of the transferability of the potential, while the annealing simulations illustrate the graphitization process and test bond-making and -breaking. A wide spread of behavior is seen across the six potentials, with quantities such as sp2 fraction, radial distribution function, morphology, ring statistics, and 002 reflection intensity differing considerably. While none of the potentials is perfect, some perform particularly poorly. The lack of transferability can be traced to the details of the functional form, suggesting future directions in the development of carbon potentials.

[1]  Tang,et al.  Atomistic simulation of thermomechanical properties of beta -SiC. , 1995, Physical review. B, Condensed matter.

[2]  Peter Gumbsch,et al.  Describing bond-breaking processes by reactive potentials: Importance of an environment-dependent interaction range , 2008 .

[3]  D. Mckenzie,et al.  Comparison of density-functional, tight-binding, and empirical methods for the simulation of amorphous carbon , 2002 .

[4]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[5]  Franzblau Ds,et al.  Computation of ring statistics for network models of solids. , 1991 .

[6]  Martin T. Dove,et al.  DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism , 2006 .

[7]  E. Kaxiras,et al.  Environment-dependent interatomic potential for bulk silicon , 1997, cond-mat/9704137.

[8]  Rajiv K. Kalia,et al.  Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide , 2007 .

[9]  H. Mao,et al.  The pressure-temperature phase and transformation diagram for carbon; updated through 1994 , 1996 .

[10]  M. Finnis,et al.  A simple empirical N-body potential for transition metals , 1984 .

[11]  K. Lonsdale X-Ray Diffraction , 1971, Nature.

[12]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[13]  Young-Han Shin,et al.  A modified embedded-atom method interatomic potential for Germanium , 2008 .

[14]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[15]  J. Keinonen,et al.  Formation of Ion Irradiation-Induced Small-Scale Defects on Graphite Surfaces. , 1996, Physical review letters.

[16]  Dirk Lamoen,et al.  sp3/sp2 characterization of carbon materials from first-principles calculations: X-ray photoelectron versus high energy electron energy-loss spectroscopy techniques , 2005 .

[17]  J. Robertson,et al.  Stress reduction and bond stability during thermal annealing of tetrahedral amorphous carbon , 1999 .

[18]  D. Mckenzie,et al.  Ab initio simulations of the structure of amorphous carbon , 2000 .

[19]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[20]  G. H. Vineyard,et al.  Dynamics of Radiation Damage in a Body-Centered Cubic Lattice , 1964 .

[21]  J. Tersoff,et al.  Empirical interatomic potential for carbon, with application to amorphous carbon. , 1988, Physical review letters.

[22]  J. Badding,et al.  Reversible high pressure sp2–sp3 transformations in carbon , 2007 .

[23]  A. Rode,et al.  High-temperature formation of concentric fullerene-like structures within foam-like carbon: Experiment and molecular dynamics simulation , 2007 .

[24]  S. Stuart,et al.  Bond-order potentials with split-charge equilibration: application to C-, H-, and O-containing systems. , 2012, The Journal of chemical physics.

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  A. V. van Duin,et al.  ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. , 2008, The journal of physical chemistry. A.

[27]  Junho Choi,et al.  Development of empirical bond-order-type interatomic potential for amorphous carbon structures , 2009 .

[28]  Modelling diamond-like carbon with the environment-dependent interaction potential , 2002 .

[29]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[30]  Tersoff Chemical order in amorphous silicon carbide. , 1994, Physical review. B, Condensed matter.

[31]  J. Tersoff,et al.  New empirical model for the structural properties of silicon. , 1986, Physical review letters.

[32]  E. Alonso,et al.  Empirical approach for the interatomic potential of carbon , 1996 .

[33]  L. Ghiringhelli,et al.  Improved long-range reactive bond-order potential for carbon. I. Construction (Correction on vol 72, pg 214102, 2005) , 2005 .

[34]  Mikhail I Katsnelson,et al.  Graphene as a prototype crystalline membrane. , 2013, Accounts of chemical research.

[35]  Tao Liang,et al.  Variable charge reactive potential for hydrocarbons to simulate organic-copper interactions. , 2012, The journal of physical chemistry. A.

[36]  Donald W. Brenner,et al.  The Art and Science of an Analytic Potential , 2000 .

[37]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[38]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[39]  P. Erhart,et al.  Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide , 2005 .

[40]  S. G. Srinivasan,et al.  Modified Embedded Atom Method Study of the Mechanical Properties of Carbon Nanotube Reinforced Nickel Composites , 2010 .

[41]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[42]  J. Robertson,et al.  Tetrahedral amorphous carbon films prepared by magnetron sputtering and dc ion plating , 1996 .

[43]  N. Marks Evidence for subpicosecond thermal spikes in the formation of tetrahedral amorphous carbon , 1997 .

[44]  Adalberto Fazzio,et al.  STRUCTURAL PROPERTIES OF AMORPHOUS SILICON NITRIDE , 1998 .

[45]  R. Perriot,et al.  Screened environment-dependent reactive empirical bond-order potential for atomistic simulations of carbon materials , 2013 .

[46]  D. G. Pettifor,et al.  Analytic bond-order potentials beyond Tersoff-Brenner. I. Theory , 1999 .

[47]  N. Marks Generalizing the environment-dependent interaction potential for carbon , 2000 .

[48]  J. Los,et al.  Intrinsic long-range bond-order potential for carbon: Performance in Monte Carlo simulations of graphitization , 2003 .

[49]  Peter Gumbsch,et al.  Atomistic modeling of hydrocarbon systems using analytic bond-order potentials , 2007 .

[50]  Franzblau Computation of ring statistics for network models of solids. , 1991, Physical review. B, Condensed matter.

[51]  A. V. van Duin,et al.  Development of a ReaxFF potential for carbon condensed phases and its application to the thermal fragmentation of a large fullerene. , 2015, The journal of physical chemistry. A.

[52]  E. Kaxiras,et al.  INTERATOMIC POTENTIAL FOR SILICON DEFECTS AND DISORDERED PHASES , 1997, cond-mat/9712058.

[53]  Yunfeng Shi A mimetic porous carbon model by quench molecular dynamics simulation. , 2008, The Journal of chemical physics.

[54]  L. Ghiringhelli,et al.  Improved long-range reactive bond-order potential for carbon. II. Molecular simulation of liquid carbon , 2005 .

[55]  D. Frenkel,et al.  Liquid carbon: structure near the freezing line , 2005 .

[56]  Susan B. Sinnott,et al.  A reactive empirical bond order (REBO) potential for hydrocarbon oxygen interactions , 2004 .

[57]  N. Marks,et al.  Self-assembly of sp2-bonded carbon nanostructures from amorphous precursors , 2009 .

[58]  M. Yin,et al.  Structural theory of graphite and graphitic silicon , 1984 .

[59]  Steven J. Stuart,et al.  Empirical bond‐order potential for hydrocarbons: Adaptive treatment of van der Waals interactions , 2008, J. Comput. Chem..

[60]  H. Mao,et al.  Amorphous diamond: a high-pressure superhard carbon allotrope. , 2011, Physical review letters.

[61]  Ananth Grama,et al.  Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques , 2012, Parallel Comput..

[62]  Yanli Wang,et al.  Quantum chemical study of π–π stacking interactions of the bacteriochlorophyll dimer in the photosynthetic reaction center of Rhodobacter sphaeroides , 2002 .

[63]  M. Robbins,et al.  AIREBO-M: a reactive model for hydrocarbons at extreme pressures. , 2015, The Journal of chemical physics.

[64]  R. Franklin Crystallite growth in graphitizing and non-graphitizing carbons , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[65]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[66]  M. Heggie Semiclassical interatomic potential for carbon and its application to the self-interstitial in graphite , 1991 .

[67]  G. Zhang,et al.  The effect of empirical potential functions on modeling of amorphous carbon using molecular dynamics method , 2013 .

[68]  W. Goddard,et al.  ReaxFF-lg: correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials. , 2011, The journal of physical chemistry. A.

[69]  Mckenzie,et al.  Microscopic structure of tetrahedral amorphous carbon. , 1996, Physical review letters.

[70]  Tersoff Carbon defects and defect reactions in silicon. , 1990, Physical review letters.

[71]  C. Fisher,et al.  Tersoff Potential Parameters for Simulating Cubic Boron Carbonitrides , 2000 .

[72]  Sudhir B. Kylasa,et al.  The ReaxFF reactive force-field: development, applications and future directions , 2016 .

[73]  N. Marks,et al.  Molecular dynamics simulations of the transformation of carbon peapods into double-walled carbon nanotubes , 2010 .

[74]  D. Frenkel,et al.  High-pressure diamondlike liquid carbon , 2004, cond-mat/0403250.

[75]  S. Stuart,et al.  Molecular dynamics investigation on liquid–liquid phase change in carbon with empirical bond-order potentials , 2003 .

[76]  A. Akimov,et al.  Large-Scale Computations in Chemistry: A Bird's Eye View of a Vibrant Field. , 2015, Chemical reviews.

[77]  Michael E. Foster,et al.  An analytical bond‐order potential for carbon , 2015, J. Comput. Chem..

[78]  Tzu-Ray Shan,et al.  Classical atomistic simulations of surfaces and heterogeneous interfaces with the charge-optimized many body (COMB) potentials , 2013 .