A nonlocal Fokker-Planck equation for non-Gaussian stochastic dynamical systems

Abstract This work is devoted to the study of a nonlocal Fokker–Planck equation for a class of stochastic differential equations with α -stable Levy motion ( 0 α 2 ). The existence and uniqueness of the weak solution is proved under suitable conditions, by a vanishing viscosity method.

[1]  M. Meerschaert,et al.  Stochastic Models for Fractional Calculus , 2011 .

[2]  Luis Silvestre,et al.  On the differentiability of the solution to an equation with drift and fractional diffusion , 2010, 1012.2401.

[3]  Vlad Vicol,et al.  On the Loss of Continuity for Super-Critical Drift-Diffusion Equations , 2012, 1205.4364.

[4]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[5]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[6]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[7]  Maria Giovanna Garroni,et al.  Green Functions for Second Order Parabolic Integro-Differential Problems , 1993 .

[8]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[9]  Luis Silvestre,et al.  Regularity of the obstacle problem for a fractional power of the laplace operator , 2007 .

[10]  C. Foiaș,et al.  Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .

[11]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[12]  Mark M. Meerschaert,et al.  Space-time fractional diffusion on bounded domains , 2012 .

[13]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.