Current and Future Research Trends in Evolutionary Multiobjective Optimization

In this chapter we present a brief analysis of the current research performed on evolutionary multiobjective optimization. After analyzing first- and second-generation multiobjective evolutionary algorithms, we address two important issues: the role of elitism in evolutionary multiobjective optimization and the way in which concepts from multiobjective optimization can be applied to constraint-handling techniques. We conclude with a discussion of some of the most promising research trends in the years to come.

[1]  G. Rudolph On a multi-objective evolutionary algorithm and its convergence to the Pareto set , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[2]  Patrick D. Surry,et al.  A Multi-objective Approach to Constrained Optimisation of Gas Supply Networks: the COMOGA Method , 1995, Evolutionary Computing, AISB Workshop.

[3]  Patrick D. Surry,et al.  The COMOGA Method: Constrained Optimisation by Multi-Objective Genetic Algorithms , 1997 .

[4]  Thomas Hanne,et al.  On the convergence of multiobjective evolutionary algorithms , 1999, Eur. J. Oper. Res..

[5]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[6]  A. Wightman,et al.  Mathematical Physics. , 1930, Nature.

[7]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[8]  C. Coello,et al.  Multiobjective optimization using a micro-genetic algorithm , 2001 .

[9]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[10]  Yaochu Jin,et al.  Dynamic Weighted Aggregation for evolutionary multi-objective optimization: why does it work and how? , 2001 .

[11]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[12]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[13]  Joel N. Morse,et al.  Reducing the size of the nondominated set: Pruning by clustering , 1980, Comput. Oper. Res..

[14]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[15]  R. Rosenberg Simulation of genetic populations with biochemical properties : technical report , 1967 .

[16]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[17]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[18]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[19]  Prabhat Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[20]  Lothar Thiele,et al.  A Comparison of Selection Schemes used in Genetic Algorithms , 1995 .

[21]  Carlos A. Coello Coello,et al.  Handling Constraints in Genetic Algorithms Using Dominance-based Tournaments , 2002 .

[22]  Michael P. Fourman,et al.  Compaction of Symbolic Layout Using Genetic Algorithms , 1985, ICGA.

[23]  Martina Gorges-Schleuter,et al.  Application of Genetic Algorithms to Task Planning and Learning , 1992, Parallel Problem Solving from Nature.

[24]  C. Coello,et al.  CONSTRAINT-HANDLING USING AN EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION TECHNIQUE , 2000 .

[25]  Günter Rudolph,et al.  Convergence properties of some multi-objective evolutionary algorithms , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[26]  Z. Michalewicz,et al.  Your brains and my beauty: parent matching for constrained optimisation , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[27]  Jeffrey Horn,et al.  The Niched Pareto Genetic Algorithm 2 Applied to the Design of Groundwater Remediation Systems , 2001, EMO.

[28]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[29]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[30]  Tapabrata Ray,et al.  An Evolutionary Algorithm for Constrained Optimization , 2000, GECCO.

[31]  C. Coello TREATING CONSTRAINTS AS OBJECTIVES FOR SINGLE-OBJECTIVE EVOLUTIONARY OPTIMIZATION , 2000 .

[32]  P. Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[33]  Carlos A. Coello Coello,et al.  A Micro-Genetic Algorithm for Multiobjective Optimization , 2001, EMO.

[34]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[35]  Carlos A. Coello Coello,et al.  Evolutionary multiobjective design of combinational logic circuits , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[36]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 , 2000 .

[37]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[38]  Thomas Hanne,et al.  Global Multiobjective Optimization Using Evolutionary Algorithms , 2000, J. Heuristics.

[39]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[40]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[41]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[42]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[43]  David A. Van Veldhuizen,et al.  Evolutionary Computation and Convergence to a Pareto Front , 1998 .

[44]  C. A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[45]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[46]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[47]  W. Stadler Multicriteria Optimization in Engineering and in the Sciences , 1988 .

[48]  Wolfram Stadler,et al.  Fundamentals of Multicriteria Optimization , 1988 .

[49]  José L. Verdegay,et al.  Evolutionary Techniques for Constrained Optimization Problems , 1999 .

[50]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[51]  J. David Schaffer,et al.  Multi-Objective Learning via Genetic Algorithms , 1985, IJCAI.

[52]  Charles Gide,et al.  Cours d'économie politique , 1911 .