Time accurate partitioned algorithms for the solution of fluid–structure interaction problems in haemodynamics

In this work we deal with the numerical solution of the fluid-structure interaction problem arising in the haemodynamic environment. In particular, we consider BDF and Newmark time discretization schemes, and we study different methods for the treatment of the fluid-structure interface position, focusing on partitioned algorithms for the prescription of the continuity conditions at the fluid-structure interface. We consider explicit and implicit algorithms, and new hybrid methods. We study numerically the performances and the accuracy of these schemes, highlighting the best solutions for haemodynamic applications. We also study numerically their convergence properties with respect to time discretization, by introducing an analytical test case.

[1]  A Porpora,et al.  Numerical treatment of boundary conditions to replace lateral branches in hemodynamics , 2012, International journal for numerical methods in biomedical engineering.

[2]  Wulf G. Dettmer,et al.  On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction , 2008 .

[3]  Christian Vergara,et al.  Nitsche’s Method for Defective Boundary Value Problems in Incompressibile Fluid-dynamics , 2011, J. Sci. Comput..

[4]  Fabio Nobile,et al.  Fluid-structure partitioned procedures based on Robin transmission conditions , 2008, J. Comput. Phys..

[5]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[6]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[7]  Paolo Crosetto,et al.  Parallel Algorithms for Fluid-Structure Interaction Problems in Haemodynamics , 2011, SIAM J. Sci. Comput..

[8]  Fabio Nobile,et al.  Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems , 2009 .

[9]  Fabio Nobile,et al.  Partitioned Algorithms for Fluid-Structure Interaction Problems in Haemodynamics , 2012, Milan Journal of Mathematics.

[10]  Fabio Nobile,et al.  Numerical approximation of fluid-structure interaction problems with application to haemodynamics , 2001 .

[11]  Fabio Nobile,et al.  Efficient algorithms for the solution of fluid-structure interaction problems in haemodynamic applications , 2013 .

[12]  Miguel Angel Fernández,et al.  A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .

[13]  Charles A. Taylor,et al.  A coupled momentum method for modeling blood flow in three-dimensional deformable arteries , 2006 .

[14]  Cornel Marius Murea,et al.  A fast method for solving fluid–structure interaction problems numerically , 2009 .

[15]  Miguel A. Fernández,et al.  A projection semi‐implicit scheme for the coupling of an elastic structure with an incompressible fluid , 2007 .

[16]  Alfio Quarteroni,et al.  Cardiovascular mathematics : modeling and simulation of the circulatory system , 2009 .

[17]  A. Quarteroni,et al.  Fluid–structure algorithms based on Steklov–Poincaré operators , 2006 .

[18]  Annalisa Quaini,et al.  Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction , 2008, SIAM J. Sci. Comput..

[19]  Luca Gerardo-Giorda,et al.  Analysis and Optimization of Robin-Robin Partitioned Procedures in Fluid-Structure Interaction Problems , 2010, SIAM J. Numer. Anal..

[20]  R. Ogden,et al.  A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models , 2000 .

[21]  A. Quarteroni,et al.  On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels , 2001 .

[22]  G. Kassab,et al.  Surrounding tissues affect the passive mechanics of the vessel wall: theory and experiment. , 2007, American journal of physiology. Heart and circulatory physiology.

[23]  Alfio Quarteroni,et al.  On the physical consistency between three-dimensional and one-dimensional models in haemodynamics , 2013, J. Comput. Phys..

[24]  W. Wall,et al.  Truly monolithic algebraic multigrid for fluid–structure interaction , 2011 .

[25]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[26]  Jan Vierendeels,et al.  Analysis and stabilization of fluid-structure interaction algorithm for rigid-body motion , 2005 .

[27]  Christian Vergara,et al.  Flow rate boundary problems for an incompressible fluid in deformable domains: Formulations and solution methods , 2010 .

[28]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[29]  Hermann G. Matthies,et al.  Algorithms for strong coupling procedures , 2006 .

[30]  J-F Gerbeau,et al.  External tissue support and fluid–structure simulation in blood flows , 2012, Biomechanics and modeling in mechanobiology.

[31]  Xiao-Chuan Cai,et al.  Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling , 2010, J. Comput. Phys..

[32]  Wolfgang A. Wall,et al.  Coupling strategies for biomedical fluid–structure interaction problems , 2010 .

[33]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics , 2007 .

[34]  F. NOBILE,et al.  An Effective Fluid-Structure Interaction Formulation for Vascular Dynamics by Generalized Robin Conditions , 2008, SIAM J. Sci. Comput..

[35]  C. Vergara,et al.  Flow rate defective boundary conditions in haemodynamics simulations , 2005 .

[36]  Matteo Astorino,et al.  Convergence analysis of a projection semi-implicit coupling scheme for fluid–structure interaction problems , 2010, Numerische Mathematik.

[37]  Christian Vergara,et al.  Prescription of General Defective Boundary Conditions in Fluid-Dynamics , 2012 .

[38]  Alfio Quarteroni,et al.  Numerical Treatment of Defective Boundary Conditions for the Navier-Stokes Equations , 2002, SIAM J. Numer. Anal..

[39]  K. Bathe,et al.  Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction , 2009 .

[40]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[41]  J. Boyle,et al.  Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches , 2008 .

[42]  Tayfun E. Tezduyar,et al.  Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations , 2006 .

[43]  Padmanabhan Seshaiyer,et al.  A nonconforming finite element method for fluid–structure interaction problems , 2005 .

[44]  T. Kenner,et al.  Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models , 2006, Medical and Biological Engineering and Computing.

[45]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[46]  E. Ramm,et al.  Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows , 2007 .

[47]  Charbel Farhat,et al.  Design of Efficient Partitioned Procedures for the Transient Solution of Aeroelastic Problems , 2000 .

[48]  Miguel A. Fernández,et al.  Robin Based Semi-Implicit Coupling in Fluid-Structure Interaction: Stability Analysis and Numerics , 2009, SIAM J. Sci. Comput..

[49]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .