Indium distribution at the interfaces of (Ga,In)(N,As)∕GaAs quantum wells

The indium distribution across (Ga,In)(N,As) quantum wells is determined by using transmission electron microscopy techniques. Inside the quantum well, the indium distribution is well described by Muraki’s segregation model; however, it fails in reflecting the concentration at the interfaces. To describe them, we propose a sigmoidal law which defines the smooth variation of the indium concentration with the position and provides a systematic and quantitative characterization of the interfaces. The thermal stability of the interfaces and their interplay with segregation effects are discussed. A connection between the high thermal robustness of the interfaces and the inherent thermodynamic miscibility gap of the alloy is suggested.

[1]  M. Pessa,et al.  Nitrogen-enhanced indium segregation in (Ga,In)(N,As)/GaAs multiple quantum wells grown by molecular-beam epitaxy , 2007 .

[2]  Qi An,et al.  Homogeneous nucleation and growth of melt in copper. , 2007, The Journal of chemical physics.

[3]  K. Ploog,et al.  Critical parameters for the molecular beam epitaxial growth of 1.55μm (Ga,In)(N,As) multiple quantum wells , 2006 .

[4]  N. Xiang,et al.  Effect of indium segregation on optical and structural properties of GaInNAs∕GaAs quantum wells at emission wavelength of 1.3μm , 2006 .

[5]  K. Ploog,et al.  Molecular beam epitaxial growth window for high-quality (Ga,In)(N,As) quantum wells for long wavelength emission , 2006 .

[6]  A. Passaseo,et al.  Segregation in In x Ga1− x As/GaAs Stranski–Krastanow layers grown by metal–organic chemical vapour deposition , 2005 .

[7]  Henning Riechert,et al.  Low threshold InGaAsN/GaAs lasers beyond 1500 nm , 2005 .

[8]  J. Chauveau,et al.  Correlation between interface structure and light emission at 1.3–1.55 μm of (Ga,In)(N,As) diluted nitride heterostructures on GaAs substrates , 2004 .

[9]  J. Chauveau,et al.  Nanoscale analysis of the In and N spatial redistributions upon annealing of GaInNAs quantum wells , 2004 .

[10]  K. Ku,et al.  Interface structure and chemistry in ZnSe/Ga1-xMnxAs/ZnSe heterostructures , 2003 .

[11]  James S. Harris,et al.  GaInNAs long-wavelength lasers: progress and challenges , 2002 .

[12]  B. Gil Low-dimensional nitride semiconductors , 2002 .

[13]  V. Grillo,et al.  Simultaneous experimental evaluation of In and N concentrations in InGaAsN quantum wells , 2001 .

[14]  S. G. Patterson,et al.  X-Ray diffraction analysis of bandgap-engineered distributed bragg reflectors , 1999 .

[15]  G. B. Stringfellow,et al.  Solubility of nitrogen in binary III–V systems , 1997 .

[16]  Takeshi Kitatani,et al.  GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance , 1996 .

[17]  R. M. Cohen Interdiffusion in alloys of the GaInAsP system , 1993 .

[18]  Ryoichi Ito,et al.  Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells , 1992 .

[19]  R. Logan,et al.  Thermal stability of InGaAs/InP quantum well structures grown by gas source molecular beam epitaxy , 1987 .