Sulfuric acid in the phaeophyte alga Desmarestiamunda deters feeding by the sea urchin Strongylocentrotusdroebachiensis

[1]  R. Roa Design and analysis of multiple-choice feeding-preference experiments , 1992, Oecologia.

[2]  P. Renaud,et al.  Interactions of plant stress and herbivory: intraspecific variation in the susceptibility of a palatable versus an unpalatable seaweed to sea urchin grazing , 1990, Oecologia.

[3]  P. Renaud,et al.  Large mobile versus small sedentary herbivores and their resistance to seaweed chemical defenses , 1988, Oecologia.

[4]  O. Mcconnell,et al.  Polyphenols in brown algaeFucus vesiculosus andAscophyllum nodosum: Chemical defenses against the marine herbivorous snail,Littorina littorea , 1981, Journal of Chemical Ecology.

[5]  G. Wolfe,et al.  Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage , 2001 .

[6]  H. Kawai,et al.  ACCUMULATION OF SULFURIC ACID IN DICTYOTALES (PHAEOPHYCEAE): TAXONOMIC DISTRIBUTION AND ION CHROMATOGRAPHY OF CELL EXTRACTS , 1999 .

[7]  J. McCarthy,et al.  PHLOROTANNIN ALLOCATION AMONG TISSUES OF NORTHEASTERN PACIFIC KELPS AND ROCKWEEDS , 1999 .

[8]  D. Duggins,et al.  Geographic variation in polyphenolic levels of Northeastern Pacific kelps and rockweeds , 1999 .

[9]  N. Targett,et al.  MINIREVIEW—PREDICTING THE EFFECTS OF BROWN ALGAL PHLOROTANNINS ON MARINE HERBIVORES IN TROPICAL AND TEMPERATE OCEANS , 1998 .

[10]  S. Murray,et al.  Factors influencing food choice by the seaweed-eating marine snail Norrisianorrisi (Trochidae) , 1998 .

[11]  W. Stam,et al.  PHYLOGENYAND HISTORICAL ECOLOGY OF THE DESMARESTIACEAE (PHAEOPHYCEAE) SUPPORT A SOUTHERN HEMISPHERE ORIGIN 1 , 1997 .

[12]  G. Cronin,et al.  Susceptibility to Herbivores Depends on Recent History of both the Plant and Animal , 1996 .

[13]  A. Peters,et al.  Temperature tolerance and latitudinal range of brown algae from temperate Pacific South America , 1993 .

[14]  P. Steinberg,et al.  Tolerance of Marine Invertebrate Herbivores to Brown Algal Phlorotannins in Temperate Australasia , 1992 .

[15]  M. A. Neighbors,et al.  Nutritional quality of macrophytes eaten and not eaten by two temperatezone herbivorous fishes: A multivariate comparison , 1991 .

[16]  J. Emmett Duffy,et al.  Food and Shelter as Determinants of Food Choice by an Herbivorous Marine Amphipod , 1991 .

[17]  J. Himmelman,et al.  Urchin Foraging and Algal Survival Strategies in Intensely Grazed Communities in Eastern Canada , 1990 .

[18]  W. Stam,et al.  The Geographic Distribution of Seaweed Species in Relation to Temperature: Present and Past , 1990 .

[19]  G. R. South,et al.  Effects of an experimental reduction in grazing by green sea urchins on a benthic macroalgal community in eastern Newfoundland , 1990 .

[20]  T. E. Thompson Acidic allomones in marine organisms , 1988, Journal of the Marine Biological Association of the United Kingdom.

[21]  W. Fenical,et al.  Marine Plant-Herbivore Interactions: The Ecology of Chemical Defense , 1988 .

[22]  A. Peters,et al.  Life-history studies ― a new approach to the taxonomy of ligulate species of Desmarestia (Phaeophyceae) from the Pacific coast of Canada , 1986 .

[23]  P. Steinberg FEEDING PREFERENCES OF TEGULA FUNEBRALIS AND CHEMICAL DEFENSES OF MARINE BROWN ALGAE , 1985 .

[24]  P. Dayton The Structure and Regulation of Some South American Kelp Communities , 1985 .

[25]  G. R. South,et al.  Depth-dependent reproductive output of the green sea urchin, Strongylocentrotus droebachiensis (O.F. Müller), in relation to the nature and availability of food , 1984 .

[26]  M. A. Neighbors,et al.  Protein and Nitrogen Assimilation as a Factor in Predicting the Seasonal Macroalgal Diet of the Monkeyface Prickleback , 1984 .

[27]  R. Cleland,et al.  Active, Irreversible Accumulation of Extreme Levels of H(2)SO(4) in the Brown Alga, Desmarestia. , 1982, Plant physiology.

[28]  S. Gaines,et al.  A Unified Approach to Marine Plant-Herbivore Interactions. I. Populations and Communities , 1981 .

[29]  Paul C. Silva,et al.  MORPHOLOGY AND TAXONOMY OF HIMANTOTHALLUS (INCLUDING PHAEOGLOSSUM AND PHYLLOGIGAS), AN ANTARCTIC MEMBER OF THE DESMARESTIALES (PHAEOPHYCEAE) 1 , 1981 .

[30]  W. J. Mattson,et al.  Herbivory in relation to plant nitrogen content , 1980 .

[31]  M. Littler,et al.  The Evolution of Thallus Form and Survival Strategies in Benthic Marine Macroalgae: Field and Laboratory Tests of a Functional Form Model , 1980, The American Naturalist.

[32]  M. E. Nicotri Factors involved in herbivore food preference , 1980 .

[33]  D. Stoecker RESISTANCE OF A TUNICATE TO FOULING , 1978 .

[34]  E. Percival,et al.  Carbohydrates of the seaweeds, Desmarestia ligulata and D. firma , 1978 .

[35]  R. Vadas Preferential Feeding: An Optimization Strategy in Sea Urchins , 1977 .

[36]  J. Lawrence,et al.  On the relationship between marine plants and sea urchins , 1975 .

[37]  J. Himmelman,et al.  Foods and predators of the green sea urchin Strongylocentrotus droebachiensis in Newfoundland waters , 1971 .

[38]  R. Paine,et al.  Calorific values of benthic marine algae and their postulated relation to invertebrate food preference , 1969 .

[39]  C. Bovell,et al.  SULFURIC ACID IN DESMARESTIA , 1958 .

[40]  G. Rigg,et al.  THE ACIDITY OF THE JUICE OF DESMARESTIA , 1937 .

[41]  O. Folin,et al.  ON TYROSINE AND TRYPTOPHANE DETERMINATIONS IN PROTEINS , 1927 .