Turbo equalization via constrained-delay APP estimation with decision feedback

We consider turbo equalization for intersymbol interference (ISI) channels, wherein soft symbol decisions generated by the channel detector are iteratively exchanged with the outer error-correction decoder based on the turbo principle. Our work is based on low-complexity suboptimal soft-output channel detection using a constrained-delay (CD) a posteriori probability (APP) algorithm. Central to the proposed idea is the incorporation of effective decision-feedback schemes, which significantly reduce complexity while providing immunity against error propagation that typically plagues decision-feedback schemes. We observe that the effect of decision feedback is quite different on turbo equalization versus traditional, hard-decision-generating and noniterative equalization. In particular, we demonstrate that when the feedback scheme applied is inadequate for the given equalizer parameters and ISI condition, the extrinsic information generated by the equalizer becomes distinctly non-Gaussian, and the quality of soft information, as monitored by the trajectory of mutual information, fails to improve in the iterative process. We identify parameters of feedback-based CD-APP schemes that offer favorable complexity/performance tradeoffs, compared with existing turbo-equalization techniques.

[1]  John M. Cioffi,et al.  Low-complexity iterative decoding with decision-aided equalization for magnetic recording channels , 2001, IEEE J. Sel. Areas Commun..

[2]  Stephan ten Brink,et al.  Designing Iterative Decoding Schemes with the Extrinsic Information Transfer Chart , 2001 .

[3]  Sergio Benedetto,et al.  Algorithm for continuous decoding of turbo codes , 1996 .

[4]  Shahid U. H. Qureshi,et al.  Reduced-state sequence estimation for coded modulation of intersymbol interference channels , 1989, IEEE J. Sel. Areas Commun..

[5]  Paul H. Siegel,et al.  Guest editorial - the turbo principle: from theory to practice II , 2001, IEEE J. Sel. Areas Commun..

[6]  John M. Cioffi,et al.  Iterative soft interference cancellation for multiple antenna systems , 2000, 2000 IEEE Wireless Communications and Networking Conference. Conference Record (Cat. No.00TH8540).

[7]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[8]  Paul H. Siegel,et al.  Guest editorial the turbo principle: from theory to practice , 2001, IEEE J. Sel. Areas Commun..

[9]  Andrew C. Singer,et al.  Turbo equalization: principles and new results , 2002, IEEE Trans. Commun..

[10]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[11]  Andrew J. Viterbi,et al.  An Intuitive Justification and a Simplified Implementation of the MAP Decoder for Convolutional Codes , 1998, IEEE J. Sel. Areas Commun..

[12]  Xiao Ma,et al.  Path partitions and forward-only trellis algorithms , 2003, IEEE Trans. Inf. Theory.

[13]  Alexandra Duel-Hallen,et al.  Delayed decision-feedback sequence estimation , 1989, IEEE Trans. Commun..

[14]  R. Gallager Information Theory and Reliable Communication , 1968 .

[15]  Jaekyun Moon,et al.  Performance comparison of detection methods in magnetic recording , 1990 .

[16]  Patrick Robertson,et al.  A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[17]  K. Abend,et al.  Statistical detection for communication channels with intersymbol interference , 1970 .

[18]  Jaekyun Moon,et al.  Efficient sequence detection for intersymbol interference channels with run-length constraints , 1994, IEEE Trans. Commun..

[19]  John G. Proakis,et al.  Digital Communications , 1983 .

[20]  H. Vincent Poor,et al.  Iterative (turbo) soft interference cancellation and decoding for coded CDMA , 1999, IEEE Trans. Commun..

[21]  Enzo Baccarelli,et al.  A reduced-state soft-statistics-based MAP/DF equalizer for data transmission over long ISI channels , 2000, IEEE Trans. Commun..

[22]  Jaekyun Moon,et al.  Equalization For Maximum Likelihood Detectors , 1994, Digest of the Magnetic Recording Conference.

[23]  The Turbo Principle : From Theory to Practice , 2022 .

[24]  Joachim Hagenauer,et al.  Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[25]  Hesham El Gamal,et al.  Analyzing the turbo decoder using the Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[26]  Sergio Benedetto,et al.  A soft-input soft-output maximum a posteriori (MAP) module to decode parallel and serial concatenated codes , 1996 .

[27]  Yoichi Sato,et al.  Optimum soft-output detection for channels with intersymbol interference , 1995, IEEE Trans. Inf. Theory.

[28]  Dariush Divsalar,et al.  Iterative turbo decoder analysis based on density evolution , 2001, IEEE J. Sel. Areas Commun..

[29]  Joachim Hagenauer,et al.  A Viterbi algorithm with soft-decision outputs and its applications , 1989, IEEE Global Telecommunications Conference, 1989, and Exhibition. 'Communications Technology for the 1990s and Beyond.

[30]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[31]  G. David Forney,et al.  Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference , 1972, IEEE Trans. Inf. Theory.

[32]  Alain Glavieux,et al.  Iterative correction of intersymbol interference: Turbo-equalization , 1995, Eur. Trans. Telecommun..

[33]  Jitendra K. Tugnait,et al.  Identification and deconvolution of multichannel linear non-Gaussian processes using higher order statistics and inverse filter criteria , 1997, IEEE Trans. Signal Process..