Low-temperature gas opacity. ÆSOPUS: a versatile and quick computational tool

We introduce a new tool – AESOPUS: Accurate Equation of State and OPacity Utility Software – for computing the equation of state and the Rosseland mean (RM) opacities of matter in the ideal gas phase. Results are given as a function of one pair of state variables, (i.e. temperature T in the range 3.2 ≤ log(T ) ≤ 4.5, and parameter R = ρ/(T/10 6 K) 3 in the range −8 ≤ log(R) ≤ 1), and arbitrary chemical mixture. The chemistry is presently solved for about 800 species, consisting of almost 300 atomic and 500 molecular species. The gas opacities account for many continuum and discrete sources, including atomic opacities, molecular absorption bands, and collision-induced absorption. Several tests made on AESOPUS have proved that the new opacity tool is accurate in the results, flexible in the management of the input prescriptions, and agile in terms of computational time requirement. Purpose of this work is to greatly expand the public availability of Rosseland mean opacity data in the low-temperature regime. We set up a web-interface (http://stev.oapd.inaf.it/aesopus) which enables the user to compute and shortly retrieve RM opacity tables according to his/her specific needs, allowing a full degree of freedom in specifying the chemical composition of the gas. As discussed in the paper, useful applications may regard, for instance, RM opacities of gas mixtures with i) scaled-solar abundances of metals, choosing among various solar mixture compilations available in the literature; ii) varying CNO abundances, suitable for evolutionary models of red and asymptotic giant branch stars and massive stars in the Wolf-Rayet stages; iii) various degrees of enhancement in α-elements, and C-N, O-Na, and Mg-Al abundance anti-correlations, necessary to properly describe the properties of stars in early-type galaxies and Galactic globular clusters; iv) zero-metal abundances appropriate for studies of gas opacity in primordial conditions.

[1]  L. Girardi,et al.  Synthetic photometry for carbon rich giants I. Hydrostatic dust-free models ⋆ , 2009, 0905.4415.

[2]  M. Hogerheijde,et al.  Molecules in astrophysics. Probes and processes , 1996 .

[3]  S. Rosseland Note on the Absorption of Radiation within a Star , 1924 .

[4]  A. Ramos,et al.  An artificial neural network approach to the solution of molecular chemical equilibrium , 2005, astro-ph/0505322.

[5]  I. Kamp,et al.  The solar photospheric nitrogen abundance - Analysis of atomic transitions with 3D and 1D model atmospheres , 2009, 0903.3406.

[6]  T. Beers,et al.  THE DISCOVERY AND ANALYSIS OF VERY METAL-POOR STARS IN THE GALAXY , 2005 .

[7]  P. Marigo Asymptotic Giant Branch evolution at varying surface C/O ratio: effects of changes in molecular opacities , 2002, astro-ph/0203036.

[8]  -INAF,et al.  Evolution of asymptotic giant branch stars. I. Updated synthetic TP-AGB models and their basic calibration , 2007, astro-ph/0703139.

[9]  E. Salpeter,et al.  Rosseland and Planck mean opacities of a zero-metallicity gas , 1991 .

[10]  S. Lucatello,et al.  Abundances of C, N, O in slightly evolved stars in the globular clusters NGC 6397, NGC 6752 and 47 Tuc , 2004, astro-ph/0411241.

[11]  P. Bonifacio,et al.  The photospheric solar oxygen project. I. Abundance analysis of atomic lines and influence of atmosp , 2008, 0805.4398.

[12]  A. I. Boothroyd,et al.  Low-Mass Stars. II. The Core Mass--Luminosity Relations for Low-Mass Stars , 1988 .

[13]  J. Tennyson,et al.  A High-Temperature Partition Function for H3+ , 1995 .

[14]  N. Grevesse,et al.  In: Origin and Evolution of the elements , 1993 .

[15]  A. Dotter,et al.  Stellar Population Models and Individual Element Abundances. I. Sensitivity of Stellar Evolution Models , 2007, 0706.0808.

[16]  J. Lattanzio,et al.  Abundances in intermediate-mass AGB stars undergoing third dredge-up and hot-bottom burning , 2007, 0704.1907.

[17]  A. Bressan,et al.  The history of star formation and mass assembly in early‐type galaxies , 2008, 0809.1189.

[18]  D. Alexander Low-Temperature Rosseland Opacity Tables , 1975 .

[19]  N. Grevesse,et al.  Standard Solar Composition , 1998 .

[20]  William H. Press,et al.  Numerical recipes , 1990 .

[21]  Rosseland and Planck mean opacities for primordial matter , 2004, astro-ph/0411613.

[22]  Michel Casse,et al.  Origin and evolution of the elements , 1993 .

[23]  R. Kurucz Diatomic Molecular Data for Opacity Calculations. , 1993 .

[24]  M. Seaton,et al.  Opacities for stellar envelopes , 1994 .

[25]  J. Ferguson,et al.  New asymptotic giant branch models for a range of metallicities , 2009, Astronomy & Astrophysics.

[26]  R. G. Gratton,et al.  The O-Na and Mg-Al anticorrelations in turn-off and early subgiants in globular clusters , 2001 .

[27]  A. Bressan,et al.  The star formation history of early-type galaxies as a function of mass and environment , 2006, astro-ph/0603714.

[28]  R. Wimmer–Schweingruber Joint SOHO/ACE workshop "Solar and Galactic Composition" , 2001 .

[29]  A. Irwin Polynomial partition function approximations of 344 atomic and molecular species. , 1981 .

[30]  H. Holweger Photospheric Abundances: Problems, Updates, Implications , 2001, astro-ph/0107426.

[31]  J. Tennyson,et al.  A high-accuracy computed water line list , 2006, astro-ph/0601236.

[32]  O. Gingerich Theory and observation of normal stellar atmospheres , 1969 .

[33]  D. Keeley The Static Structure of Long-Period Variable Stars , 1970 .

[34]  U. Jørgensen,et al.  Complete active space self-consistent field calculations of the vibrational band strengths for C3 , 1989 .

[35]  Updated Big Bang nucleosynthesis confronted to WMAP observations and to the abundance of light elements , 2003, astro-ph/0309480.

[36]  W. Zeilinger,et al.  Nearby early-type galaxies with ionized gas. III. Analysis of line-strength indices with new stellar , 2006, astro-ph/0609175.

[37]  T. L. John The Continuous Absorption Coefficient of Atomic and Molecular Negative Ions , 1975 .

[38]  H. Gail,et al.  Mineral formation in stellar winds - III. Dust formation in S stars , 2002 .

[39]  D. Goorvitch,et al.  Calculation of (12)C(16)O and (13)C(16)O X(1)Sigma(+) rovibrational intensities for v less than or equal to 20 and J less than or equal to 150 , 1994 .

[40]  V. Lebedev,et al.  Radiative transitions in the molecular H2+ ion , 2003 .

[41]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[42]  G. Luo An Equation of State from Cool Dense Fluids to Hot Gases for Mixed Elements , 1997, astro-ph/9711267.

[43]  J. Scalo,et al.  The Effect of Composition Changes on Evolutionary Tracks of Double-Shell Models , 1975 .

[44]  R. Siebenmorgen,et al.  The Fluorine Abundance in a Galactic Bulge AGB Star Measured from CRIRES Spectra , 2008, 0804.4057.

[45]  J. Tennyson,et al.  Improved HCN/HNC linelist, model atmospheres and synthetic spectra for WZ Cas , 2005, astro-ph/0512363.

[46]  Werner Däppen,et al.  The equation of state for stellar envelopes. II - Algorithm and selected results , 1988 .

[47]  S. Langhoff,et al.  A theoretical study of the electric dipole moment function of SiO , 1993 .

[48]  S. S. Kumar Low-luminosity Stars , 1969 .

[49]  Belgium,et al.  Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.

[50]  Saul J. Adelman,et al.  Elemental abundance analyses , 1988 .

[51]  R. Latter,et al.  Electron Radiative Transitions in a Coulomb Field , 1961 .

[52]  A. Sauval,et al.  A set of partition functions and equilibrium constants for 300 diatomic molecules of astrophysical interest , 1984 .

[53]  R. Gratton,et al.  Abundance Variations within Globular Clusters , 2004 .

[54]  A. Dalgarno SPECTRAL REFLECTIVITY OF THE EARTH'S ATMOSPHERE III: THE SCATTERING OF LIGHT BY ATOMIC SYSTEMS , 1962 .

[55]  C. Helling,et al.  Gas phase mean opacities for varying (M/H), N/O, and C/O , 2009, 0906.0296.

[56]  M. Lederer,et al.  Low temperature Rosseland opacities with varied abundances of carbon and nitrogen , 2008, 0810.5672.

[57]  M. Asplund,et al.  The Solar Chemical Composition , 2007 .

[58]  Jorge Melendez,et al.  The effective temperature scale of FGK stars. I. Determination of temperatures and angular diameters with the infrared flux method , 2005 .

[59]  H. Gail,et al.  Mineral formation in stellar winds - V. Formation of calcium carbonate , 2005 .

[60]  David R. Alexander,et al.  Low-Temperature Rosseland Opacities , 1975 .

[61]  David R. Alexander,et al.  Low-Temperature Opacities , 2005, astro-ph/0502045.

[62]  U. Jørgensen,et al.  High-temperature (1000–7000 K) collision-induced absorption of H2 pairs computed from the first principles, with application to cool and dense stellar atmospheres , 2001 .

[63]  J. Ferguson,et al.  A LARGE STELLAR EVOLUTION DATABASE FOR POPULATION SYNTHESIS STUDIES. V. STELLAR MODELS AND ISOCHRONES WITH CNONa ABUNDANCE ANTICORRELATIONS , 2009, 0903.0825.

[64]  William B. Hubbard,et al.  A Theory for the Radius of the Transiting Giant Planet HD 209458b , 2003, astro-ph/0305277.

[65]  Johns Hopkins University,et al.  Improved Color-Temperature Relations and Bolometric Corrections for Cool Stars , 1999, astro-ph/9911367.

[66]  Harry Partridge,et al.  The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data , 1997 .

[67]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[68]  F. Herwig Evolution of Asymptotic Giant Branch Stars , 2005 .

[69]  I. Kamp,et al.  The Solar Photospheric Nitrogen Abundance: Determination with 3D and 1D Model Atmospheres , 2009, Publications of the Astronomical Society of Australia.

[70]  B. Plez,et al.  Chemical Abundances in 12 Red Giants of the Large Magellanic Cloud from High-Resolution Infrared Spectroscopy , 2002, astro-ph/0208417.

[71]  Garching,et al.  On the Primordial Scenario for Abundance Variations within Globular Clusters: The Isochrone Test , 2006, astro-ph/0604137.

[72]  Jianmin Yuan Atomic Data for Opacity Calculations , 2007 .

[73]  D. Williams,et al.  RAYLEIGH SCATTERING BY MOLECULAR HYDROGEN , 1962 .

[74]  A. Burrows,et al.  Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres , 2006, astro-ph/0607211.

[75]  G. J. Matthews,et al.  Asymptotic-giant-branch stars , 1992, Nature.

[76]  Primordial nucleosynthesis and the abundances of beryllium and boron , 1992, astro-ph/9206002.

[77]  R. S. Ram,et al.  The A 6Σ+-X 6Σ+ transition of CrH, Einstein coefficients, and an improved description of the A state , 2001 .

[78]  A. Eddington On the Absorption of Radiation inside a Star , 1922 .

[79]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[80]  S. Cristallo,et al.  Molecular Opacities for Low-Mass Metal-poor AGB Stars Undergoing the Third Dredge-up , 2007, 0706.2100.

[81]  THE EFFECT OF THE ELECTRON DONOR H~3^+ ON THE PRE-MAIN-SEQUENCE AND MAIN-SEQUENCE EVOLUTION OF LOW-MASS, ZERO-METALLICITY STARS , 2003, astro-ph/0309487.