An optimal-time construction of sparse Euclidean spanners with tiny diameter

In STOC'95 [5] Arya et al. showed that for any set of <i>n</i> points in R<sup><i>d</i></sup>, a (1 + ε)-spanner with diameter at most 2 (respectively 3) and <i>O</i>(<i>n</i> log <i>n</i>) edges (resp., <i>O</i>(<i>n</i> log log <i>n</i>) edges) can be built in <i>O</i>(<i>n</i> log <i>n</i>) time. Moreover, Arya et al. [5] conjectured that one can build in <i>O</i>(<i>n</i> log <i>n</i>) time a (1 + ε)-spanner with diameter at most 4 and <i>O</i>(<i>n</i> log* <i>n</i>) edges. Since then, this conjecture became a central open problem in this area. Nevertheless, very little progress on this problem was reported up to this date. In particular, the previous state-of-the-art subquadratic-time construction of (1 + ε)-spanners with <i>o</i>(<i>n</i> log log <i>n</i>) edges due to Arya et al. [5] produces spanners with diameter 8. In addition, general tradeoffs between the diameter and number of edges were established [5, 26]. Specifically it was shown in [5, 26] that for any <i>k</i> ≥ 4, one can build in <i>O</i>(<i>n</i>(log <i>n</i>)2<sup><i>k</i></sup><i>α</i><sub><i>k</i></sub>(<i>n</i>)) time a (1 + ε)-spanner with diameter at most 2<i>k</i> and <i>O</i>(<i>n</i>2<sup><i>k</i></sup><i>α</i><sub><i>k</i></sub>(<i>n</i>)) edges. The function α<sub><i>k</i></sub> is the inverse of a certain Ackermann-style function at the ⌊<i>k</i>/2⌋th level of the primitive recursive hierarchy, where α<sub>0</sub>(<i>n</i>) = ⌈<i>n</i>/2⌉, α<sub>1</sub>(<i>n</i>) = ⌈√<i>n</i>⌉, α<sub>2</sub>(<i>n</i>) = ⌈log <i>n</i>⌉, α<sub>3</sub>(<i>n</i>) = ⌈log log <i>n</i>⌉, α<sub>4</sub>(<i>n</i>) = log* <i>n</i>, α<sub>5</sub>(<i>n</i>) = ⌈1/2 log* <i>n</i>⌉,..., etc. It is also known [26] that if one allows quadratic time then these bounds can be improved. Specifically, for any <i>k</i> ≥ 4, a (1 + ε)-spanner with diameter at most <i>k</i> and <i>O</i>(<i>nkα</i><sub><i>k</i></sub>(<i>n</i>)) edges can be constructed in <i>O</i>(<i>n</i><sup>2</sup>) time [26]. A major open question in this area is whether one can construct within time <i>O</i>(<i>n</i> log <i>n + nkα</i><sub><i>k</i></sub>(<i>n</i>)) a (1 + ε)-spanner with diameter at most <i>k</i> and <i>O</i>(<i>nkα</i><sub><i>k</i></sub>(<i>n</i>)) edges. This question in the particular case of <i>k</i> = 4 coincides with the aforementioned conjecture of Arya et al. [5]. In this paper we answer this long-standing question in the affirmative. Moreover, in fact, we provide a stronger result. Specifically we show that for any <i>k</i> ≥ 4, a (1 + ε)-spanner with diameter at most <i>k</i> and <i>O</i>(<i>nα</i><sub><i>k</i></sub>(<i>n</i>)) edges can be built in optimal time <i>O</i>(<i>n</i> log <i>n</i>). In particular, our tradeoff for <i>k</i> = 4 provides an <i>O</i>(<i>n</i> log <i>n</i>)-time construction of (1 + ε)-spanners with diameter at most 4 and <i>O</i>(<i>n</i> log* <i>n</i>) edges, thus settling the conjecture of Arya et al. [5]. The tradeoff between the diameter and number of edges of our spanner construction is tight up to constant factors in the entire range of parameters, even if one allows the spanner to use (arbitrarily many) Steiner points.

[1]  Michiel H. M. Smid,et al.  Euclidean spanners: short, thin, and lanky , 1995, STOC '95.

[2]  Bernard Chazelle Computing on a Free Tree via Complexity-Preserving Mappings , 1984, FOCS.

[3]  Giri Narasimhan,et al.  A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1997, Int. J. Comput. Geom. Appl..

[4]  Andrew Chi-Chih Yao,et al.  Space-time tradeoff for answering range queries (Extended Abstract) , 1982, STOC '82.

[5]  Satish Rao,et al.  Approximating geometrical graphs via “spanners” and “banyans” , 1998, STOC '98.

[6]  Nicola Santoro,et al.  Trade-Offs in Non-Reversing Diameter , 1994, Nord. J. Comput..

[7]  David Peleg,et al.  Sparse communication networks and efficient routing in the plane (extended abstract) , 2000, PODC '00.

[8]  Pankaj K. Agarwal,et al.  Lower bound for sparse Euclidean spanners , 2005, SODA '05.

[9]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[10]  Paul Chew,et al.  There is a planar graph almost as good as the complete graph , 1986, SCG '86.

[11]  Robert E. Tarjan,et al.  Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.

[12]  Bernard Chazelle,et al.  Computing on a free tree via complexity-preserving mappings , 1984, Algorithmica.

[13]  Michiel H. M. Smid,et al.  Randomized and deterministic algorithms for geometric spanners of small diameter , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[14]  Bernard Chazelle,et al.  The complexity of computing partial sums off-line , 1991, Int. J. Comput. Geom. Appl..

[15]  Joachim Gudmundsson,et al.  Fast Pruning of Geometric Spanners , 2005, STACS.

[16]  Ittai Abraham,et al.  Compact routing on euclidian metrics , 2004, PODC '04.

[17]  Giri Narasimhan,et al.  A new way to weigh Malnourished Euclidean graphs , 1995, SODA '95.

[18]  David Peleg,et al.  An approximation algorithm for minimum-cost network design , 1994, Robust Communication Networks: Interconnection and Survivability.

[19]  Carl Gutwin,et al.  Classes of graphs which approximate the complete euclidean graph , 1992, Discret. Comput. Geom..

[20]  Erik D. Demaine,et al.  Tight bounds for the partial-sums problem , 2004, SODA '04.

[21]  Kyomin Jung,et al.  Transitive-Closure Spanners , 2008, SIAM J. Comput..

[22]  Joachim Gudmundsson,et al.  Approximate distance oracles for geometric graphs , 2002, SODA '02.

[23]  Michael Elkin,et al.  Shallow-Low-Light Trees, and Tight Lower Bounds for Euclidean Spanners , 2008, FOCS.

[24]  Joachim Gudmundsson,et al.  Approximate distance oracles for geometric spanners , 2008, TALG.

[25]  Han La Poutré New Techniques for the Union-Find Problems , 1990, SODA.

[26]  Giri Narasimhan,et al.  Efficient algorithms for constructing fault-tolerant geometric spanners , 1998, STOC '98.

[27]  Michiel H. M. Smid,et al.  Efficient construction of a bounded-degree spanner with low weight , 2006, Algorithmica.

[28]  S. Rao Kosaraju,et al.  Faster algorithms for some geometric graph problems in higher dimensions , 1993, SODA '93.

[29]  J. A. La Poutré New techniques for the union-find problem , 1990, SODA 1990.

[30]  Anupam Gupta,et al.  Small Hop-diameter Sparse Spanners for Doubling Metrics , 2006, SODA '06.

[31]  Mikkel Thorup,et al.  Parallel Shortcutting of Rooted Trees , 1997, J. Algorithms.

[32]  David Peleg,et al.  Sparse communication networks and efficient routing in the plane , 2001, Distributed Computing.

[33]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[34]  Robert E. Tarjan,et al.  Applications of Path Compression on Balanced Trees , 1979, JACM.