An optimal-time construction of sparse Euclidean spanners with tiny diameter
暂无分享,去创建一个
[1] Michiel H. M. Smid,et al. Euclidean spanners: short, thin, and lanky , 1995, STOC '95.
[2] Bernard Chazelle. Computing on a Free Tree via Complexity-Preserving Mappings , 1984, FOCS.
[3] Giri Narasimhan,et al. A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1997, Int. J. Comput. Geom. Appl..
[4] Andrew Chi-Chih Yao,et al. Space-time tradeoff for answering range queries (Extended Abstract) , 1982, STOC '82.
[5] Satish Rao,et al. Approximating geometrical graphs via “spanners” and “banyans” , 1998, STOC '98.
[6] Nicola Santoro,et al. Trade-Offs in Non-Reversing Diameter , 1994, Nord. J. Comput..
[7] David Peleg,et al. Sparse communication networks and efficient routing in the plane (extended abstract) , 2000, PODC '00.
[8] Pankaj K. Agarwal,et al. Lower bound for sparse Euclidean spanners , 2005, SODA '05.
[9] David P. Dobkin,et al. On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..
[10] Paul Chew,et al. There is a planar graph almost as good as the complete graph , 1986, SCG '86.
[11] Robert E. Tarjan,et al. Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.
[12] Bernard Chazelle,et al. Computing on a free tree via complexity-preserving mappings , 1984, Algorithmica.
[13] Michiel H. M. Smid,et al. Randomized and deterministic algorithms for geometric spanners of small diameter , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[14] Bernard Chazelle,et al. The complexity of computing partial sums off-line , 1991, Int. J. Comput. Geom. Appl..
[15] Joachim Gudmundsson,et al. Fast Pruning of Geometric Spanners , 2005, STACS.
[16] Ittai Abraham,et al. Compact routing on euclidian metrics , 2004, PODC '04.
[17] Giri Narasimhan,et al. A new way to weigh Malnourished Euclidean graphs , 1995, SODA '95.
[18] David Peleg,et al. An approximation algorithm for minimum-cost network design , 1994, Robust Communication Networks: Interconnection and Survivability.
[19] Carl Gutwin,et al. Classes of graphs which approximate the complete euclidean graph , 1992, Discret. Comput. Geom..
[20] Erik D. Demaine,et al. Tight bounds for the partial-sums problem , 2004, SODA '04.
[21] Kyomin Jung,et al. Transitive-Closure Spanners , 2008, SIAM J. Comput..
[22] Joachim Gudmundsson,et al. Approximate distance oracles for geometric graphs , 2002, SODA '02.
[23] Michael Elkin,et al. Shallow-Low-Light Trees, and Tight Lower Bounds for Euclidean Spanners , 2008, FOCS.
[24] Joachim Gudmundsson,et al. Approximate distance oracles for geometric spanners , 2008, TALG.
[25] Han La Poutré. New Techniques for the Union-Find Problems , 1990, SODA.
[26] Giri Narasimhan,et al. Efficient algorithms for constructing fault-tolerant geometric spanners , 1998, STOC '98.
[27] Michiel H. M. Smid,et al. Efficient construction of a bounded-degree spanner with low weight , 2006, Algorithmica.
[28] S. Rao Kosaraju,et al. Faster algorithms for some geometric graph problems in higher dimensions , 1993, SODA '93.
[29] J. A. La Poutré. New techniques for the union-find problem , 1990, SODA 1990.
[30] Anupam Gupta,et al. Small Hop-diameter Sparse Spanners for Doubling Metrics , 2006, SODA '06.
[31] Mikkel Thorup,et al. Parallel Shortcutting of Rooted Trees , 1997, J. Algorithms.
[32] David Peleg,et al. Sparse communication networks and efficient routing in the plane , 2001, Distributed Computing.
[33] Giri Narasimhan,et al. Geometric spanner networks , 2007 .
[34] Robert E. Tarjan,et al. Applications of Path Compression on Balanced Trees , 1979, JACM.