Crystal structure of a PCP/Sfp complex reveals the structural basis for carrier protein posttranslational modification.

[1]  A. Keatinge-Clay,et al.  The structures of type I polyketide synthases. , 2012, Natural product reports.

[2]  M. Mittag,et al.  A novel function of yeast fatty acid synthase. Subunit alpha is capable of self-pantetheinylation. , 2000, European journal of biochemistry.

[3]  D. Oesterhelt,et al.  Multimeric options for the auto-activation of the Saccharomyces cerevisiae FAS type I megasynthase. , 2009, Structure.

[4]  V. Dötsch,et al.  Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems , 2007, Nature Protocols.

[5]  R. Koradia,et al.  Point-centered domain decomposition for parallel molecular dynamics simulation , 2000 .

[6]  V. Praphanphoj,et al.  Identification of the alpha-aminoadipic semialdehyde dehydrogenase-phosphopantetheinyl transferase gene, the human ortholog of the yeast LYS5 gene. , 2001, Molecular genetics and metabolism.

[7]  D. Ehmann,et al.  Lysine biosynthesis in Saccharomyces cerevisiae: mechanism of alpha-aminoadipate reductase (Lys2) involves posttranslational phosphopantetheinylation by Lys5. , 1999, Biochemistry.

[8]  T. Stachelhaus,et al.  Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. , 1999, Science.

[9]  M. Marahiel,et al.  Conformational Switches Modulate Protein Interactions in Peptide Antibiotic Synthetases , 2006, Science.

[10]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[11]  J. Elovson,et al.  Acyl carrier protein. X. Acyl carrier protein synthetase. , 1968, The Journal of biological chemistry.

[12]  J. Crosby,et al.  The structural role of the carrier protein--active controller or passive carrier. , 2012, Natural product reports.

[13]  Joseph P Noel,et al.  The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. , 2014, Natural product reports.

[14]  Michael D. Burkart,et al.  Reversible Chemoenzymatic Labeling of Native and Fusion Carrier Protein Motifs , 2012, Nature Methods.

[15]  Neil L Kelleher,et al.  Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Torsten Herrmann,et al.  Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. , 2002, Journal of molecular biology.

[17]  M. Marahiel,et al.  Loading peptidyl-coenzyme A onto peptidyl carrier proteins: a novel approach in characterizing macrocyclization by thioesterase domains. , 2003, Journal of the American Chemical Society.

[18]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[19]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[20]  K. Kavanagh,et al.  Mechanism and Substrate Recognition of Human Holo ACP Synthase , 2007, Chemistry & biology.

[21]  T. Steitz,et al.  The Crystal Structure of Yeast Fatty Acid Synthase, a Cellular Machine with Eight Active Sites Working Together , 2007, Cell.

[22]  M. Marahiel,et al.  Crystallization and preliminary crystallographic studies of Sfp: a phosphopantetheinyl transferase of modular peptide synthetases. , 1999, Acta crystallographica. Section D, Biological crystallography.

[23]  S. Cabantous,et al.  4′-Phosphopantetheinyl Transferase PptT, a New Drug Target Required for Mycobacterium tuberculosis Growth and Persistence In Vivo , 2012, PLoS pathogens.

[24]  S. Bruner,et al.  Rational Manipulation of Carrier‐Domain Geometry in Nonribosomal Peptide Synthetases , 2007, Chembiochem : a European journal of chemical biology.

[25]  Peter Güntert,et al.  Automated structure determination from NMR spectra. , 2015, Methods in molecular biology.

[26]  P. Evans,et al.  Scaling and assessment of data quality. , 2006, Acta crystallographica. Section D, Biological crystallography.

[27]  M. Marahiel,et al.  A new enzyme superfamily - the phosphopantetheinyl transferases. , 1996, Chemistry & biology.

[28]  K. Parris,et al.  Crystal structures of substrate binding to Bacillus subtilis holo-(acyl carrier protein) synthase reveal a novel trimeric arrangement of molecules resulting in three active sites. , 2000, Structure.

[29]  Andrew G. W. Leslie,et al.  Processing diffraction data with mosflm , 2007 .

[30]  M. Burkart,et al.  One-pot chemo-enzymatic synthesis of reporter-modified proteins. , 2006, Organic & biomolecular chemistry.

[31]  M. Marahiel,et al.  Solution structure of PCP, a prototype for the peptidyl carrier domains of modular peptide synthetases. , 2000, Structure.

[32]  S. Bruner,et al.  Structure and noncanonical chemistry of nonribosomal peptide biosynthetic machinery. , 2012, Natural product reports.

[33]  Timothy L. Foley,et al.  Manipulation of carrier proteins in antibiotic biosynthesis. , 2004, Chemistry & biology.

[34]  M. Marahiel,et al.  Structure-based mutational analysis of the 4'-phosphopantetheinyl transferases Sfp from Bacillus subtilis: carrier protein recognition and reaction mechanism. , 2004, Biochemistry.

[35]  M. Burkart,et al.  Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. , 2012, Natural product reports.

[36]  Timothy L. Foley,et al.  A strategy to discover inhibitors of Bacillus subtilis surfactin-type phosphopantetheinyl transferase. , 2010, Molecular bioSystems.

[37]  M. Marahiel,et al.  Crystal structure of the surfactin synthetase‐activating enzyme Sfp: a prototype of the 4′‐phosphopantetheinyl transferase superfamily , 1999, The EMBO journal.

[38]  H. Vogel,et al.  Current understanding of fatty acid biosynthesis and the acyl carrier protein. , 2010, The Biochemical journal.

[39]  A. Bax,et al.  TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts , 2009, Journal of biomolecular NMR.