On‐Chip Photonic Memory Elements Employing Phase‐Change Materials

Phase-change materials integrated into nanophotonic circuits provide a flexible way to realize tunable optical components. Relying on the enormous refractive-index contrast between the amorphous and crystalline states, such materials are promising candidates for on-chip photonic memories. Nonvolatile memory operation employing arrays of microring resonators is demonstrated as a route toward all-photonic chipscale information processing.

[1]  C. Wright,et al.  Arithmetic and Biologically-Inspired Computing Using Phase-Change Materials , 2011, Advanced materials.

[2]  W. Pernice,et al.  Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. , 2011, Nature nanotechnology.

[3]  S. Ovshinsky Optical Cognitive Information Processing – A New Field , 2004 .

[4]  Matthias Wuttig,et al.  Density changes upon crystallization of Ge2Sb2.04Te4.74 films , 2002 .

[5]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[6]  Sang Youl Kim,et al.  Variation of the complex refractive indices with Sb-addition in Ge-Sb-Te alloy and their wavelength dependence , 1998, Other Conferences.

[7]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[8]  C. Wright,et al.  Beyond von‐Neumann Computing with Nanoscale Phase‐Change Memory Devices , 2013 .

[9]  Shih-Hung Chen,et al.  Phase-change random access memory: A scalable technology , 2008, IBM J. Res. Dev..

[10]  W. Pernice,et al.  High Q optomechanical resonators in silicon nitride nanophotonic circuits , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[11]  Se-Ho Lee,et al.  Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. , 2007, Nature nanotechnology.

[12]  Alberto Piqué,et al.  Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices , 1999 .

[13]  Matthias Wuttig,et al.  Design Rules for Phase‐Change Materials in Data Storage Applications , 2011, Advanced materials.

[14]  M. Gribaudo,et al.  2002 , 2001, Cell and Tissue Research.

[15]  P. Dumon,et al.  Silicon microring resonators , 2012 .

[16]  Graham T. Reed,et al.  Characteristics of rib waveguide racetrack resonators in SOI , 2006, SPIE Photonics Europe.

[17]  Noboru Yamada,et al.  Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory , 2000 .

[18]  Dae-Hwan Kang,et al.  Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases , 2005 .

[19]  Michal Lipson,et al.  High confinement micron-scale silicon nitride high Q ring resonator. , 2009, Optics express.

[20]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[21]  Larry R. Dalton,et al.  Polymer micro-ring filters and modulators , 2002 .

[22]  M. Kund,et al.  Nanosecond switching in GeTe phase change memory cells , 2009 .

[23]  Jan Siegel,et al.  Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses , 2004 .

[24]  Mo Li,et al.  Optical absorption in graphene integrated on silicon waveguides , 2012 .

[25]  Erwin R. Meinders,et al.  Optical data storage : phase-change media and recording , 2006 .

[26]  V. Pruneri,et al.  Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials , 2013 .

[27]  In-Gyu Baek,et al.  One-Dimensional Thickness Scaling Study of Phase Change Material $(\hbox{Ge}_{2}\hbox{Sb}_{2}\hbox{Te}_{5})$ Using a Pseudo 3-Terminal Device , 2011, IEEE Transactions on Electron Devices.

[28]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[29]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[30]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[31]  Harish Bhaskaran,et al.  Photonic non-volatile memories using phase change materials , 2012 .