Conditions for the existence of higher symmetries of evolutionary equations on the lattice

In this paper we construct a set of five conditions necessary for the existence of generalized symmetries for a class of differential-difference equations depending only on nearest neighboring interaction. These conditions are applied to prove the existence of new integrable equations belonging to this class.

[1]  Sergei Petrovich Novikov,et al.  HOLOMORPHIC BUNDLES OVER ALGEBRAIC CURVES AND NON-LINEAR EQUATIONS , 1980 .

[2]  M. Ablowitz,et al.  On the solution of a class of nonlinear partial di erence equations , 1977 .

[3]  D. Levi,et al.  The discrete chiral-field hierarchy , 1982 .

[4]  Athanassios S. Fokas,et al.  Symplectic structures, their B?acklund transformation and hereditary symmetries , 1981 .

[5]  Mark J. Ablowitz,et al.  Nonlinear differential−difference equations , 1975 .

[6]  D. Levi,et al.  Non-linear differential-difference equations with N-dependent coefficients. I , 1979 .

[7]  Decio Levi,et al.  Integrable three-dimensional lattices , 1981 .

[8]  Alexey Borisovich Shabat,et al.  The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems , 1987 .

[9]  Kivshar,et al.  Moving localized modes in nonlinear lattices. , 1993, Physical review. B, Condensed matter.

[10]  D. Levi,et al.  EVOLUTION-EQUATIONS ASSOCIATED WITH THE DISCRETE ANALOG OF THE MATRIX SCHRODINGER SPECTRAL PROBLEM SOLVABLE BY THE INVERSE SPECTRAL TRANSFORM , 1981 .

[11]  D. Levi,et al.  Continuous and discrete matrix Burgers’ hierarchies , 1983 .

[12]  D. Levi,et al.  Symmetries of discrete dynamical systems , 1996 .

[13]  Levi,et al.  Quasisolitons on a diatomic chain at room temperature. , 1993, Physical review. B, Condensed matter.

[14]  S. I. Adian,et al.  Periodic groups and Lie algebras , 1987 .

[15]  D. Levi,et al.  Bäcklund transformations and nonlinear differential difference equations. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[16]  D. Levi,et al.  THE INHOMOGENEOUS TODA LATTICE - ITS HIERARCHY AND DARBOUX-BACKLUND TRANSFORMATIONS , 1991 .

[17]  Vladimir E. Zakharov,et al.  What Is Integrability , 1991 .

[18]  M. Ablowitz,et al.  Nonlinear differential–difference equations and Fourier analysis , 1976 .