Asia-Pacific Lightning Location Network (APLLN) and Preliminary Performance Assessment

The Asia-Pacific Lightning Location Network (APLLN) is a lightning location system consisting of a series of very low-frequency signal detection sites. Since 2018, 16 detection sites have been deployed with an average baseline longer than 1000 km. The detection site used a trigger sampling method to record the lightning signal with a duration of 2 ms and calculates the lightning arrival time based on digital filtering and the Hilbert envelope method. APLLN used a time difference location algorithm and improved Levenberg–Marquardt non-linear least squares iterative algorithm to calculate and optimize the lightning location results. The analysis results of a strong thunderstorm process show that the average detection efficiency of APLLN was 55.34% for intracloud (IC) strokes, 63.55% for cloud-to-ground (CG) strokes and 61.83% for all strokes (IC + CG). The average location error of APLLN for this thunderstorm is 5–10 km.

[1]  K. Strong,et al.  A performance assessment of the World Wide Lightning Location Network (WWLLN) via comparison with the Canadian Lightning Detection Network (CLDN) , 2010 .

[2]  Kenneth L. Cummins,et al.  A Combined TOA/MDF Technology Upgrade of the U.S. National Lightning Detection Network , 1998 .

[3]  K.L. Cummins,et al.  An Overview of Lightning Locating Systems: History, Techniques, and Data Uses, With an In-Depth Look at the U.S. NLDN , 2009, IEEE Transactions on Electromagnetic Compatibility.

[4]  Jin He,et al.  Classification of VLF/LF Lightning Signals Using Sensors and Deep Learning Methods , 2020, Sensors.

[5]  Paul Krehbiel,et al.  A GPS‐based three‐dimensional lightning mapping system: Initial observations in central New Mexico , 1999 .

[6]  Vladimir A. Rakov,et al.  Electromagnetic Methods of Lightning Detection , 2013, Surveys in Geophysics.

[7]  John M. Hall,et al.  Characterization and applications of VLF/LF source locations from lightning using the Huntsville Alabama Marx Meter Array , 2013 .

[8]  Ting Wu,et al.  Lightning Mapping With an Array of Fast Antennas , 2018 .

[9]  James B. Brundell,et al.  VLF lightning location by time of group arrival (TOGA) at multiple sites , 2002 .

[10]  D. E. Proctor A hyperbolic system for obtaining VHF radio pictures of lightning , 1971 .

[11]  Robert H. Holzworth,et al.  Performance Assessment of the World Wide Lightning Location Network (WWLLN), Using the Los Alamos Sferic Array (LASA) as Ground Truth , 2006 .

[12]  D. E. Proctor,et al.  VHF radio pictures of lightning flashes to ground , 1988 .

[13]  Steven J. Goodman,et al.  North Alabama Lightning Mapping Array (LMA): VHF Source Retrieval Algorithm and Error Analyses , 2004 .

[14]  P. Krehbiel,et al.  Accuracy of the Lightning Mapping Array , 2003 .

[15]  C. Rodger,et al.  Location accuracy of long distance VLF lightning locationnetwork , 2004 .

[16]  X. Qie,et al.  Performance assessment of Beijing Lightning Network (BLNET) and comparison with other lightning location networks across Beijing , 2017 .

[17]  Robert H. Holzworth,et al.  WWLL global lightning detection system: Regional validation study in Brazil , 2004 .

[18]  Yu Wang,et al.  Beijing Lightning Network (BLNET) and the observation on preliminary breakdown processes , 2016 .

[19]  D. E. Proctor VHF radio pictures of cloud flashes , 1981 .

[20]  A. C. Lee,et al.  An experimental study of the remote location of lightning flashes using a VLF arrival time difference technique , 1986 .

[21]  Craig J. Rodger,et al.  Location accuracy of VLF World-Wide Lightning Location (WWLL) network: Post-algorithm upgrade , 2005 .

[22]  John P. Barrett,et al.  A low‐frequency near‐field interferometric‐TOA 3‐D Lightning Mapping Array , 2014 .

[23]  A. Pázman Nonlinear least squares - uniqueness versus ambiguity , 1984 .

[24]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[25]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[26]  Robert H. Holzworth,et al.  Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): initial case study , 2006 .

[27]  Xuan-Min Shao,et al.  The Los Alamos Sferic Array: A research tool for lightning investigations , 2002 .

[28]  Martin A. Uman,et al.  A Gated, Wideband Magnetic Direction Finder for Lightning Return Strokes , 1976 .

[29]  Shi Qiu,et al.  Fine Three‐Dimensional VHF Lightning Mapping Using Waveform Cross‐Correlation TOA Method , 2020, Earth and Space Science.

[30]  K. Schmidt,et al.  LINET—An international lightning detection network in Europe , 2009 .

[31]  C. Rodger,et al.  The world wide lightning location network (WWLLN): Update of status and applications , 2014, 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS).

[32]  S. Enno,et al.  Lightning Sferics: Analysis of the Instantaneous Phase and Frequency Inferred From Complex Waveforms , 2018 .

[33]  Ranjit M. Passi,et al.  A parametric estimation of systematic errors in networks of magnetic direction finders , 1989 .

[34]  Abram R. Jacobson,et al.  A method for determining intracloud lightning and ionospheric heights from VLF/LF electric field records , 2004 .