Frequency-force relationships of mammalian ventricular muscle in vivo and in vitro.
暂无分享,去创建一个
The change in contractility with increasing heart rate was studied in the left ventricle of dogs and in isolated trabeculae carneae of cats. For some of the studies in situ a transient isovolumic state was created by aortic occlusion. At physiological temperatures the frequency-force relationship is flatter than at room temperature and at the same temperature it is flatter in vivo than in vitro. The frequency-(dF/dt)max relationship is steeper than the frequency-force relationship at both temperatures in vivo and in vitro. The frequency-(dF/dt)max relationship is steeper in vitro than it is in situ, although the discrepancy is less marked than in the case of the frequency-force relationship. It is concluded that "staircase" plays less of a physiological role in adjustment of contractile state in situ than might be inferred from studies of isolated tissue.