Optimum composite material design

On traite ici le probleme d'identification de microstructures: certaines phases a certains pourcentages en volume etant donnees, comment les melanger dans une cellule de periodicite, de maniere que les constantes effectives du materiau periodique soient les plus proches possibles de valeurs donnees. On etudie le probleme dans le cas de l'equation de conduction lineaire, qui est pose en termes de la theorie du controle optimal. On montre l'existence d'une solution ainsi que la convergence d'approximation numerique.

[1]  Jacques-Louis Lions,et al.  Some Methods in the Mathematical Analysis of Systems and Their Control , 1981 .

[2]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[3]  G. Allaire,et al.  Optimal design for minimum weight and compliance in plane stress using extremal microstructures , 1993 .

[4]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[5]  Marco Avellaneda,et al.  Optimal bounds and microgeometries for elastic two-phase composites , 1987 .

[6]  N. Kikuchi,et al.  A homogenization method for shape and topology optimization , 1991 .

[7]  Andrej Cherkaev,et al.  Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion , 1984, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[8]  O. Sigmund Materials with prescribed constitutive parameters: An inverse homogenization problem , 1994 .

[9]  Robert V. Kohn,et al.  Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. , 1994 .

[10]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[11]  Graeme W. Milton,et al.  On characterizing the set of possible effective tensors of composites: The variational method and the translation method , 1990 .

[12]  O. Sigmund Tailoring materials with prescribed elastic properties , 1995 .

[13]  Robert V. Kohn,et al.  On Bounding the Effective Conductivity of Anisotropic Composites , 1986 .

[14]  G. Francfort,et al.  Non-Classical Continuum Mechanics: Optimal Bounds for Conduction in Two-Dimensional, Two-Phase, Anisotropic Media , 1987 .

[15]  Robert V. Kohn,et al.  Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials , 1993 .