A Benchmark Diagnostic Model Generation System

It is critical to use automated generators for synthetic models and data given the sparsity of benchmark models for empirical analysis and the cost of generating models by hand. We describe an automated generator for benchmark models that is based on using a compositional modeling framework and employs graphical models for the system topology. We propose a three-step process for synthetic model generation: 1) domain analysis; 2) topology generation; and 3) system-level behavioral model generation. To demonstrate our approach on two highly different domains, we generate models using this process for circuits drawn from the International Symposium on Circuits and Systems benchmark suite and a process-control system. We then analyze the synthetic models according to two criteria: 1) topological fidelity and 2) diagnostic efficiency. Based on this comparison, we identify parameters necessary for the autogenerated models to generate benchmark diagnosis circuit and process-control models with realistic properties.

[1]  Jonathan Rose,et al.  Synthetic circuit generation using clustering and iteration , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[2]  Thidarat Tosukhowong,et al.  Fault detection and diagnosis of pulp mill process , 2006 .

[3]  Justin E. Harlow,et al.  Overview of Popular Benchmark Sets , 2000, IEEE Des. Test Comput..

[4]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[5]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[6]  Stefano Marrone,et al.  Compositional Modeling of Complex Systems: Contact Center Scenarios in OsMoSys , 2004, ICATPN.

[7]  Henry A. Kautz,et al.  Constraints and AI planning , 2005, IEEE Intelligent Systems.

[8]  Dirk Stroobandt,et al.  The interpretation and application of Rent's rule , 2000, IEEE Trans. Very Large Scale Integr. Syst..

[9]  Kathleen Marchal,et al.  SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms , 2006, BMC Bioinformatics.

[10]  Andrew B. Kahng,et al.  Interconnect implications of growth-based structural models for VLSI circuits , 2001, SLIP '01.

[11]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[12]  Georg Gottlob,et al.  Fixed-Parameter Algorithms For Artificial Intelligence, Constraint Satisfaction and Database Problems , 2007, Comput. J..

[13]  R. Rengaswamy,et al.  Comprehensive design of a sensor network for chemical plants based on various diagnosability and reliability criteria. 1. Framework , 2002 .

[14]  Gregory M. Provan An Empirical Analysis of the Complexity of Model-Based Diagnosis , 2006, ECAI.

[15]  Georg Gottlob,et al.  Bounded treewidth as a key to tractability of knowledge representation and reasoning , 2006, Artif. Intell..

[16]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results , 1990, Autom..

[17]  Gregory M. Provan,et al.  An Analysis of Bayesian Network Model-Approximation Techniques , 2008, ECAI.

[18]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[19]  François E. Cellier,et al.  Object-Oriented Modeling of Complex Physical Systems Using the Dymola Bond-Graph Library , 2002 .

[20]  Johannes F. Broenink,et al.  BOND-GRAPH MODELING IN MODELICA ™ , 1997 .

[21]  William H. Press,et al.  Numerical recipes in C , 2002 .

[22]  Gregory M. Provan,et al.  A Comparative Analysis of Specific Spatial Network Topological Models , 2009, Complex.

[23]  Gregory M. Provan,et al.  Topological Analysis of Specific Spatial Complex Networks , 2009, Adv. Complex Syst..

[24]  Matthieu Latapy,et al.  Efficient and simple generation of random simple connected graphs with prescribed degree sequence , 2005, J. Complex Networks.

[25]  Hilding Elmqvist,et al.  Modeling from Physical Principles , 1996 .

[26]  Gregory M. Provan,et al.  Characterizing the Structural Complexity of Real-World Complex Networks , 2009, Complex.

[27]  P.J. Mosterman,et al.  Formalizing Causal Block Diagrams for Modeling a Class of Hybrid Dynamic Systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[28]  Jeroen Keppens,et al.  Centre for Intelligent Systems and Their Applications on Compositional Modelling on Compositional Modelling on Compositional Modelling* , 2022 .

[29]  Steven X. Ding,et al.  Model-based fault diagnosis in technical processes , 2000 .

[30]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[31]  Süleyman Cenk Sahinalp,et al.  Not All Scale-Free Networks Are Born Equal: The Role of the Seed Graph in PPI Network Evolution , 2006, Systems Biology and Computational Proteomics.

[32]  Edward A. Lee,et al.  A component-based approach to modeling and simulating mixed-signal and hybrid systems , 2002, TOMC.

[33]  Holger Giese,et al.  Hybrid UML Components for the Design of Complex Self-Optimizing Mechatronic Systems , 2004, ICINCO.

[34]  Jan M. Van Campenhout,et al.  Towards synthetic benchmark circuits for evaluating timing-driven CAD tools , 1999, ISPD '99.

[35]  Adam Tauman Kalai,et al.  Graph model selection using maximum likelihood , 2006, ICML.

[36]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[37]  Gregory M. Provan,et al.  Incremental Algorithms for Approximate Compilation , 2008, AAAI.

[38]  Steve Caplin,et al.  Principles Of Design , 2011 .

[39]  Georg Gottlob,et al.  The Complexity of Logic-Based Abduction , 1993, STACS.

[40]  N Mathias,et al.  Small worlds: how and why. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[42]  R. Guimerà,et al.  The worldwide air transportation network: Anomalous centrality, community structure, and cities' global roles , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Jan M. Van Campenhout,et al.  On synthetic benchmark generation methods , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[44]  Peter A. Fritzson,et al.  Principles of object-oriented modeling and simulation with Modelica 2.1 , 2004 .

[45]  Yang Zhao,et al.  Finding broad-scale patterns in large size electronic circuit netlists , 2005, 48th Midwest Symposium on Circuits and Systems, 2005..

[46]  François E. Cellier,et al.  Hierarchical non-linear bond graphs: a unified methodology for modeling complex physical systems , 1992, Simul..

[47]  Fan Chung Graham,et al.  Duplication Models for Biological Networks , 2002, J. Comput. Biol..

[48]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[49]  Gautam Biswas,et al.  Efficient Simulation of Component-Based Hybrid Models Represented as Hybrid Bond Graphs , 2007, HSCC.

[50]  Pietro Torasso,et al.  COMPACT DIAGNOSES REPRESENTATION IN DIAGNOSTIC PROBLEM SOLVING , 2005, Comput. Intell..

[51]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[52]  S. Leibler,et al.  Biological rhythms: Circadian clocks limited by noise , 2000, Nature.

[53]  Diego Rasskin-Gutman,et al.  Modularity. Understanding the Development and Evolution of Natural Complex Systems , 2005 .

[54]  Alan C. Evans,et al.  Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. , 2007, Cerebral cortex.

[55]  Gregory M. Provan,et al.  Computing Minimal Diagnoses by Greedy Stochastic Search , 2008, AAAI.

[56]  Joseph Sifakis,et al.  Composition for component-based modeling , 2002, Sci. Comput. Program..

[57]  Peter J. F. Lucas Bayesian model-based diagnosis , 2001, Int. J. Approx. Reason..

[58]  Joseba Quevedo,et al.  Introduction to the DAMADICS actuator FDI benchmark study , 2006 .

[59]  Pedro Mendes,et al.  Artificial gene networks for objective comparison of analysis algorithms , 2003, ECCB.

[60]  Walter Willinger,et al.  Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications , 2005, Internet Math..

[61]  Hans Vangheluwe,et al.  Processing causal block diagrams with graph-grammars in AToM3 , 2002 .

[62]  Christian Borgs,et al.  Emergence of tempered preferential attachment from optimization , 2007, Proceedings of the National Academy of Sciences.

[63]  Günter P. Wagner,et al.  Complex Adaptations and the Evolution of Evolvability , 2005 .

[64]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[65]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[66]  Jan L. Top,et al.  Libraries of Reusable Models: Theory and Application , 1998, Simul..

[67]  Gabor Karsai,et al.  Component-oriented modeling of hybrid dynamic systems using the generic modeling environment , 2006, Fourth Workshop on Model-Based Development of Computer-Based Systems and Third International Workshop on Model-Based Methodologies for Pervasive and Embedded Software (MBD-MOMPES'06).

[68]  Francis J. Doyle,et al.  A pulp mill benchmark problem for control: problem description , 2004 .

[69]  Adnan Darwiche,et al.  Model-Based Diagnosis using Structured System Descriptions , 1998, J. Artif. Intell. Res..

[70]  Roger Guimerà,et al.  Modeling the world-wide airport network , 2004 .

[71]  J. P. Grossman,et al.  Characterization and parameterized generation of synthetic combinational benchmark circuits , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[72]  John P. Hayes,et al.  Unveiling the ISCAS-85 Benchmarks: A Case Study in Reverse Engineering , 1999, IEEE Des. Test Comput..

[73]  Dennis P. Swaney,et al.  Using the ECLPSS software environment to build a spatially explicit component-based model of ozone effects on forest ecosystems , 2002 .

[74]  Johan de Kleer,et al.  An Assumption-Based TMS , 1987, Artif. Intell..

[75]  Daniel E. Zak,et al.  Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network. , 2003, Genome research.

[76]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[77]  Gregory M. Provan,et al.  Generating Application-Specific Benchmark Models for Complex Systems , 2008, AAAI.

[78]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[79]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[80]  Alan S. Perelson,et al.  System Dynamics: A Unified Approach , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[81]  Christiaan J. J. Paredis,et al.  Object-Oriented Libraries of Physical Components in Simulation and Design , 2001 .

[82]  Dirk Stroobandt A priori wire length distribution models with multiterminal nets , 2003, IEEE Trans. Very Large Scale Integr. Syst..

[83]  Gregory M. Provan,et al.  Computing Observation Vectors for Max-Fault Min-Cardinality Diagnoses , 2008, AAAI.

[84]  Christos Faloutsos,et al.  Graph mining: Laws, generators, and algorithms , 2006, CSUR.

[85]  Belkacem Ould Bouamama,et al.  Bond graph approach as analysis tool in thermofluid model library conception , 2003, J. Frankl. Inst..

[86]  Hawoong Jeong,et al.  Modeling the Internet's large-scale topology , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Raymond Reiter,et al.  Characterizing Diagnoses and Systems , 1992, Artif. Intell..

[88]  Joseph Sifakis,et al.  An Approach to Modelling and Verification of Component Based Systems , 2007, SOFSEM.

[89]  Priya Mahadevan,et al.  Systematic topology analysis and generation using degree correlations , 2006, SIGCOMM 2006.

[90]  Benjamin Kuipers,et al.  Process monitoring and diagnosis: a model-based approach , 1991, IEEE Expert.

[91]  Igor Jurisica,et al.  Modeling interactome: scale-free or geometric? , 2004, Bioinform..

[92]  Paul Hudak,et al.  Functional Hybrid Modeling , 2003, PADL.

[93]  Gregory M. Provan,et al.  Automated Benchmark Model Generators for Model-Based Diagnostic Inference , 2007, IJCAI.

[94]  Jinbo Huang,et al.  Hierarchical Diagnosis of Multiple Faults , 2007, IJCAI.

[95]  Sampath Srinivas,et al.  A Probabilistic Approach to Hierarchical Model-based Diagnosis , 1994, UAI.

[96]  Natasa Przulj,et al.  Biological network comparison using graphlet degree distribution , 2007, Bioinform..

[97]  Hans L. Bodlaender,et al.  Treewidth of Graphs , 2008, Encyclopedia of Algorithms.

[98]  Walter Willinger,et al.  The workshop on internet topology (wit) report , 2006, CCRV.

[99]  John J Tyson,et al.  Model Composition for Macromolecular Regulatory Networks , 2010, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[100]  David James Sherman,et al.  BioRica: A multi model description and simulation system , 2007 .

[101]  Pieter J. Mosterman,et al.  Block Diagrams as a Syntactic Extension to , 2006 .

[102]  R. F. Cancho,et al.  Topology of technology graphs: small world patterns in electronic circuits. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[103]  Arun K. Samantaray,et al.  Sensitivity bond graph approach to multiple fault isolation through parameter estimation , 2007 .

[104]  Jan F. Broenink,et al.  20-SIM software for hierarchical bond-graph/block-diagram models , 1999, Simul. Pract. Theory.

[105]  Jeroen Keppens,et al.  Causality enabled compositional modelling of Bayesian networks , 2004 .

[106]  Raphaël Duboz,et al.  Small world properties in a DSDEVS model of ecosystem , .

[107]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[108]  E. Ziv,et al.  Inferring network mechanisms: the Drosophila melanogaster protein interaction network. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[109]  Moshe Y. Vardi,et al.  Treewidth in Verification: Local vs. Global , 2005, LPAR.

[110]  Marcel Staroswiecki,et al.  Model builder using functional and bond graph tools for FDI design , 2005 .

[111]  Jeroen Keppens,et al.  Granularity and disaggregation in compositional modelling with applications to ecological systems , 2006, Applied Intelligence.

[112]  Marc Barthelemy Crossover from scale-free to spatial networks , 2002 .