This paper considers the asymptotic properties of two kernel estimates % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaacamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E82!\[\tilde f_{_n }\]and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaqcamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E83!\[\hat f_{_n }\], which have been proposed by Bhattacharyya et al. (1988, Comm. Statist. Theory Methods, A17, 3629–3644) and Jones (1991, Biometrika, 78, 511–519), respectively, for estimating the underlying density f at a point under a general selection biased model. The asymptotic optimality of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaqcamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E83!\[\hat f_{_n }\]and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaacamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E82!\[\tilde f_{_n }\]is measured by the corresponding asymptotic minimax mean squared errors under a compactly supported Lipschitz continuous family of the underlying densities. It is shown that, in general, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaqcamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E83!\[\hat f_{_n }\]is a superior local estimate than % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaacamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E82!\[\tilde f_{_n }\]in the sense that the asymptotic minimax risk of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaqcamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E83!\[\hat f_{_n }\]is lower than that of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaacamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E82!\[\tilde f_{_n }\]. The minimax kernels and bandwidths of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaqcamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E83!\[\hat f_{_n }\]are computed explicity and shown to have simple forms and depend on the weight functions of the model.
[1]
M. C. Jones.
Kernel density estimation for length biased data
,
1991
.
[2]
Ganapati P. Patil,et al.
PROBING ENCOUNTERED DATA, META ANALYSIS AND WEIGHTED DISTRIBUTION METHODS
,
1989
.
[3]
C. J. Stone,et al.
Optimal Rates of Convergence for Nonparametric Estimators
,
1980
.
[4]
D. Donoho,et al.
Geometrizing Rates of Convergence, III
,
1991
.
[5]
Ibrahim A. Ahmad,et al.
On multivariate kernel estimation for samples from weighted distributions
,
1995
.
[6]
L. Franklin,et al.
A comparioson of nonparametric unweighited and length-biased density estimation of fibres
,
1988
.
[7]
B. Silverman.
Density estimation for statistics and data analysis
,
1986
.
[8]
Y. Vardi.
Empirical Distributions in Selection Bias Models
,
1985
.
[9]
Jerome Sacks,et al.
ASYMPTOTICALLY OPTIMUM KERNELS FOR DENSITY ESTIMATION AT A POINT
,
1981
.