Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown Clades.

Inference of evolutionary relationships between nematodes is severely hampered by their conserved morphology, the high frequency of homoplasy, and the scarcity of phylum-wide molecular data. To study the origin of nematode radiation and to unravel the phylogenetic relationships between distantly related species, 339 nearly full-length small-subunit rDNA sequences were analyzed from a diverse range of nematodes. Bayesian inference revealed a backbone comprising 12 consecutive dichotomies that subdivided the phylum Nematoda into 12 clades. The most basal clade is dominated by the subclass Enoplia, and members of the order Triplonchida occupy positions most close to the common ancestor of the nematodes. Crown Clades 8-12, a group formerly indicated as "Secernentea" that includes Caenorhabditis elegans and virtually all major plant and animal parasites, show significantly higher nucleotide substitution rates than the more basal Clades 1-7. Accelerated substitution rates are associated with parasitic lifestyles (Clades 8 and 12) or short generation times (Clades 9-11). The relatively high substitution rates in the distal clades resulted in numerous autapomorphies that allow in most cases DNA barcode-based species identification. Teratocephalus, a genus comprising terrestrial bacterivores, was shown to be most close to the starting point of Secernentean radiation. Notably, fungal feeding nematodes were exclusively found basal to or as sister taxon next to the 3 groups of plant parasitic nematodes, namely, Trichodoridae, Longidoridae, and Tylenchomorpha. The exclusive common presence of fungivorous and plant parasitic nematodes supports a long-standing hypothesis that states that plant parasitic nematodes arose from fungivorous ancestors.

[1]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[2]  Tom Bongers,et al.  The maturity index: an ecological measure of environmental disturbance based on nematode species composition , 1990, Oecologia.

[3]  N. B. Petrov,et al.  Phylogeny of Nematoda and Cephalorhyncha Derived from 18S rDNA , 1998, Journal of Molecular Evolution.

[4]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[5]  M. Blaxter,et al.  Systematic position and phylogeny , 2002 .

[6]  J. Bull,et al.  An Empirical Test of Bootstrapping as a Method for Assessing Confidence in Phylogenetic Analysis , 1993 .

[7]  H Philippe,et al.  Molecular phylogeny: pitfalls and progress. , 2000, International microbiology : the official journal of the Spanish Society for Microbiology.

[8]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[9]  E. Schierenberg Unusual cleavage and gastrulation in a freshwater nematode: developmental and phylogenetic implications , 2005, Development Genes and Evolution.

[10]  The Tale Behind the Worm , 2004, Science.

[11]  Peng Li,et al.  Relative-Rate Test for Nucleotide Substitutions between Two Lineages , 1992 .

[12]  R. Dallai,et al.  The evolution of the nematode spermatozoon , 1983 .

[13]  P. Grassé,et al.  Traite de Zoologie. Anatomie, Systematique, Biologie , 1958 .

[14]  V. V. Yushin Ultrastructure of spermatogenesis in the free-living marine nematode Anticoma possjetica (Enoplida: Anticomidae) , 2003 .

[15]  R. Raff,et al.  Evidence for a clade of nematodes, arthropods and other moulting animals , 1997, Nature.

[16]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[17]  T. Britton,et al.  Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. , 2003, Systematic biology.

[18]  D. Hunt,et al.  PROCEEDINGS OF THE FOURTH INTERNATIONAL CONGRESS OF .. NEMATOLOGY, 8-13 JUNE 2002, TENERIFE, SPAIN , 2004 .

[19]  Mark L. Blaxter,et al.  A molecular evolutionary framework for the phylum Nematoda , 1998, Nature.

[20]  A. Kohn The Lower Metazoa: Comparative Biology and Phylogeny. , 1964, Science.

[21]  F. Lutzoni,et al.  Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. , 2003, Molecular biology and evolution.

[22]  T. Bongers,et al.  Feeding habits in soil nematode families and genera-an outline for soil ecologists. , 1993, Journal of nematology.

[23]  Mark Blaxter,et al.  Molecular barcodes for soil nematode identification , 2002, Molecular ecology.

[24]  A. Hoerauf,et al.  The Role of Endosymbiotic Wolbachia Bacteria in the Pathogenesis of River Blindness , 2002, Science.

[25]  E. D. Hanson,et al.  The lower Metazoa, comparative biology and phylogeny , 1963 .

[26]  Y. Panchin,et al.  Nematode phylogeny and embryology , 1998, Nature.

[27]  J. Justine Male and Female Gametes and fertilisation , 2002 .

[28]  B. Chitwood A revised classification of the Nematoda. , 1937 .

[29]  Y Van de Peer,et al.  Comparative analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA. , 2000, Nucleic acids research.

[30]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[31]  A. Coomans,et al.  Two new species of prismatolaimus de man, 1880 (nemata: prismatolaimidae) in southern chile. , 1988, Journal of nematology.

[32]  V. Malakhov,et al.  Nematodes: Structure, Development, Classification, and Phylogeny , 1994 .

[33]  R. C. Anderson,et al.  Concepts in Nematode Systematics , 1983 .

[34]  M. Gouy,et al.  Sensitivity of the relative-rate test to taxonomic sampling. , 1998, Molecular biology and evolution.

[35]  Marc Robinson-Rechavi,et al.  RRTree: Relative-Rate Tests between groups of sequences on a phylogenetic tree , 2000, Bioinform..

[36]  M. Chitwood,et al.  Plant Parasitic Nematodes , 1981 .

[37]  S. Lorenzen,et al.  The phylogenetic systematics of free living nematodes. , 1994 .

[38]  D. Fitch,et al.  Comparative studies on the phylogeny and systematics of the rhabditidae (nematoda). , 2001, Journal of nematology.

[39]  Donald L. Lee The Biology of Nematodes , 2002 .

[40]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[41]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[42]  James H. Brown,et al.  The rate of DNA evolution: effects of body size and temperature on the molecular clock. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M. Holder,et al.  Phylogeny estimation: traditional and Bayesian approaches , 2003, Nature Reviews Genetics.

[44]  James P. Ignizio,et al.  Foreword , 1996, Comput. Oper. Res..

[45]  Mark Blaxter,et al.  A new system for Nematoda: combining morphological characters with molecular trees, and translating clades into ranks and taxa , 2004, Proceedings of the Fourth International Congress of Nematology, 8-13 June 2002, Tenerife, Spain.

[46]  A. Maggenti Comparative Morphology in Nemic Phylogeny , 1963 .

[47]  J. Baldwin,et al.  Ultrastructure of the postcorpus of the esophagus of Teratocephalus lirellus (Teratocephalida) and its use for interpreting character evolution in Secernentea (Nematoda) , 2001 .

[48]  H. Ferris,et al.  Nematode community structure as a bioindicator in environmental monitoring. , 1999, Trends in ecology & evolution.

[49]  H. Philippe,et al.  The new phylogeny of eukaryotes. , 2000, Current opinion in genetics & development.

[50]  D. Trudgill,et al.  Potato Cyst Nematode: One Species or Two ? , 1970, Nature.

[51]  S. Nadler,et al.  Evolution of plant parasitism among nematodes. , 2004, Annual review of phytopathology.

[52]  B. Chitwood The designation of official names for higher taxa of invertebrates , 1958 .

[53]  I. Andrássy Evolution as a basis for the systematization of nematodes , 1977 .