Chaos synchronization and chaos control of quantum-CNN chaotic system by variable structure control and impulse control

Abstract In this paper, we derive some less stringent conditions for the exponential and asymptotic stability of impulsive control systems with impulses at fixed times. These conditions are then used to design an impulsive control law for the Quantum Cellular Neural Network chaotic system, which drives the chaotic state to zero equilibrium and synchronizes two chaotic systems. An active sliding mode control method is synchronizing two chaotic systems and controlling chaotic state to periodic motion state. And a sufficient condition is drawn for the robust stability of the error dynamics, and is applied to guiding the design of the controllers. Finally, numerical results are used to show the robustness and effectiveness of the proposed control strategy.

[1]  Y. J. Cao A nonlinear adaptive approach to controlling chaotic oscillators , 2000 .

[2]  Xikui Ma,et al.  Synchronization of chaotic systems with parametric uncertainty using active sliding mode control , 2004 .

[3]  Jitao Sun,et al.  Impulsive control and synchronization of Chua's oscillators , 2004, Math. Comput. Simul..

[4]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[5]  Z. Ge,et al.  The generalized synchronization of a Quantum-CNN chaotic oscillator with different order systems , 2008 .

[6]  Leon O. Chua,et al.  Impulsive Control and Synchronization of Chaos , 1999 .

[7]  Zheng-Ming Ge,et al.  NON-LINEAR DYNAMICS AND CHAOS CONTROL OF A PHYSICAL PENDULUM WITH VIBRATING AND ROTATING SUPPORT , 2001 .

[8]  Guanrong Chen,et al.  From Chaos To Order Methodologies, Perspectives and Applications , 1998 .

[9]  Cheng-Hsiung Yang,et al.  Hyperchaos of four state autonomous system with three positive Lyapunov exponents , 2009 .

[10]  Guanrong Chen,et al.  From Chaos to Order - Perspectives and Methodologies in Controlling Chaotic Nonlinear Dynamical Systems , 1993 .

[11]  Moez Feki,et al.  An adaptive feedback control of linearizable chaotic systems , 2003 .

[12]  Cheng-Hsiung Yang,et al.  Synchronization of chaotic systems with uncertain chaotic parameters by linear coupling and pragmatical adaptive tracking. , 2008, Chaos.

[13]  Yen-Sheng Chen,et al.  Synchronization of unidirectional coupled chaotic systems via partial stability , 2004 .

[14]  Cheng-Hsiung Yang,et al.  Pragmatical generalized synchronization of chaotic systems with uncertain parameters by adaptive control , 2007 .

[15]  Qidi Wu,et al.  Impulsive control and its application to Lü's chaotic system , 2004 .

[16]  R. Massey From chaos to order? , 1986, Connecticut medicine.

[17]  A. Tamasevicius,et al.  Simple RC chaotic oscillator , 1996 .

[18]  Robert W. Newcomb,et al.  An RC op amp chaos generator , 1983 .

[19]  Chyun-Chau Fuh,et al.  Robust control for a class of nonlinear oscillators with chaotic attractors , 1996 .

[20]  Keiji Konishi,et al.  Sliding mode control for a class of chaotic systems , 1998 .

[21]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[22]  Aizhong Lei,et al.  Impulse tuning of Chua chaos , 2005 .

[23]  Z. Ge,et al.  Synchronization of complex chaotic systems in series expansion form , 2007 .

[24]  M. Bernardo A purely adaptive controller to synchronize and control chaotic systems , 1996 .

[25]  Ming-Jyi Jang,et al.  Sliding Mode Control of Chaos in the cubic Chua's Circuit System , 2002, Int. J. Bifurc. Chaos.

[26]  Luigi Fortuna,et al.  Quantum-CNN to Generate Nanoscale Chaotic oscillators , 2004, Int. J. Bifurc. Chaos.

[27]  Zheng-Ming Ge,et al.  Anti-control of chaos of two-degrees-of-freedom loudspeaker system and chaos synchronization of different order systems , 2004 .

[28]  Xinghuo Yu,et al.  Variable structure control approach for controlling chaos , 1997 .

[29]  Lee Sun-Jin From Chaos to Order , 2011 .

[30]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[31]  Zhang Suo-chun,et al.  Controlling uncertain Lü system using backstepping design , 2003 .