Getting Started with PEAs-Based Flapping-Wing Mechanisms for Micro Aerial Systems

This paper introduces recent advances on flapping-wing Micro and Nano Aerial Vehicles (MAVs and NAVs) based on Piezoelectric Actuators (PEA). Therefore, this work provides essential information to address the development of such bio-inspired aerial robots. PEA are commonly used in micro-robotics and precise positioning applications (e.g., micro-positioning and micro-manipulation), whereas within the Unmanned Aerial Vehicles (UAVs) domain, motors are the classical actuators used for rotary or fixed-wing configurations. Therefore, we consider it pertinent to provide essential information regarding the modeling and control of piezoelectric cantilever actuators to accelerate early design and development stages of aerial microrobots based on flapping-wing systems. In addition, the equations describing the aerodynamic behavior of a flapping-wing configuration are presented.

[1]  I Soltani Bozchalooi,et al.  Multi-actuation and PI control: a simple recipe for high-speed and large-range atomic force microscopy. , 2014, Ultramicroscopy.

[2]  Micky Rakotondrabe,et al.  Experimental comparison of rate-dependent hysteresis models in characterizing and compensating hysteresis of piezoelectric tube actuators , 2016 .

[3]  Micky Rakotondrabe Classical Prandtl-Ishlinskii modeling and inverse multiplicative structure to compensate hysteresis in piezoactuators , 2012, 2012 American Control Conference (ACC).

[4]  Micky Rakotondrabe,et al.  Multivariable Generalized Bouc-Wen modeling, identification and feedforward control and its application to multi-DoF piezoelectric actuators , 2014 .

[5]  Micky Rakotondrabe,et al.  Robust Feedforward-Feedback Control of a Nonlinear and Oscillating 2-DOF Piezocantilever , 2011, IEEE Transactions on Automation Science and Engineering.

[6]  Abdenbi Mohand-Ousaid,et al.  Design, static modeling and simulation of a 5-DOF precise piezoelectric positioner , 2016, SPIE Commercial + Scientific Sensing and Imaging.

[7]  C. Newcomb,et al.  Improving the linearity of piezoelectric ceramic actuators , 1982 .

[8]  Micky Rakotondrabe,et al.  Simultaneous suppression of badly damped vibrations and cross-couplings in a 2-DoF piezoelectric actuator by using feedforward standard H∞ approach , 2015, Commercial + Scientific Sensing and Imaging.

[9]  R. Ballas,et al.  Piezoelectric Multilayer Beam-Bending Actuators: Static and Dynamic Behavior and Aspects of Sensor Integration (Microtechnology and MEMS) , 2007 .

[10]  Micky Rakotondrabe,et al.  Bouc–Wen Modeling and Feedforward Control of Multivariable Hysteresis in Piezoelectric Systems: Application to a 3-DoF Piezotube Scanner , 2015, IEEE Transactions on Control Systems Technology.

[11]  C. Ellington The novel aerodynamics of insect flight: applications to micro-air vehicles. , 1999, The Journal of experimental biology.

[12]  Junqiang Xi,et al.  Special Issue on “Recent Developments on Modeling and Control of Hybrid Electric Vehicles” , 2016 .

[13]  Micky Rakotondrabe Modeling and compensation of multivariable creep in multi-DOF piezoelectric actuators , 2012, 2012 IEEE International Conference on Robotics and Automation.

[14]  Thomas Baron,et al.  Static/dynamic trade-off performance of PZT thick film micro-actuators , 2015 .

[15]  Wei Tech Ang,et al.  Feedforward Controller With Inverse Rate-Dependent Model for Piezoelectric Actuators in Trajectory-Tracking Applications , 2007, IEEE/ASME Transactions on Mechatronics.

[16]  Micky Rakotondrabe,et al.  Performances inclusion for stable interval systems , 2011, Proceedings of the 2011 American Control Conference.

[17]  Philippe Lutz,et al.  Complete Open Loop Control of Hysteretic, Creeped, and Oscillating Piezoelectric Cantilevers , 2010, IEEE Transactions on Automation Science and Engineering.

[18]  Micky Rakotondrabe,et al.  Enhancement of micro-positioning accuracy of a Piezoelectric positioner by suppressing the rate-dependant hysteresis nonlinearities , 2014, 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[19]  M. Al Janaideh,et al.  Inverse Rate-Dependent Prandtl–Ishlinskii Model for Feedforward Compensation of Hysteresis in a Piezomicropositioning Actuator , 2013, IEEE/ASME Transactions on Mechatronics.

[20]  Srinivas Tadigadapa,et al.  High Performance Piezoelectric Actuators and Wings for Nano Air Vehicles , 2012 .

[21]  Bijan Shirinzadeh,et al.  Sliding Mode Control of a Piezoelectric Actuator with Neural Network Compensating Rate-Dependent Hysteresis , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[22]  Qingsong Xu,et al.  Global sliding mode-based tracking control of a piezo-driven XY micropositioning stage with unmodeled hysteresis , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Micky Rakotondrabe,et al.  Experimental model inverse-based hysteresis compensation on a piezoelectric actuator , 2015, 2015 19th International Conference on System Theory, Control and Computing (ICSTCC).

[24]  Robert J. Wood,et al.  Adaptive control for takeoff, hovering, and landing of a robotic fly , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Philippe Lutz,et al.  Quadrilateral Modelling and Robust Control of a Nonlinear Piezoelectric Cantilever , 2009, IEEE Transactions on Control Systems Technology.

[26]  Shijun Guo,et al.  Theoretical and experimental study of a piezoelectric flapping wing rotor for micro aerial vehicle , 2012 .

[27]  Micky Rakotondrabe Combining self-sensing with an unkown-input-observer to estimate the displacement, the force and the state in piezoelectric cantilevered actuators , 2013, 2013 American Control Conference.

[28]  Murti V. Salapaka,et al.  Piezoelectric scanners for atomic force microscopes: design of lateral sensors, identification and control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[29]  Micky Rakotondrabe,et al.  Design of Piezoelectric Actuators with Guaranteed Performances Using the Performances Inclusion Theorem , 2013 .

[30]  S. O. Reza Moheimani,et al.  Two sensor based H-infinity control of a piezoelectric tube scanner , 2008 .

[31]  Micky Rakotondrabe,et al.  H∞ control for a smart micro-positioning system with an analytical model for the output of the inverse compensation , 2015, 2015 American Control Conference (ACC).

[32]  Chibum Lee,et al.  Robust broadband nanopositioning: fundamental trade-offs, analysis, and design in a two-degree-of-freedom control framework , 2009, Nanotechnology.

[33]  Philippe Lutz,et al.  Interval Modeling and Robust Control of Piezoelectric Microactuators , 2012, IEEE Transactions on Control Systems Technology.

[34]  P. Lutz,et al.  Nonlinear modeling and estimation of force in a piezoelectric cantilever , 2007, 2007 IEEE/ASME international conference on advanced intelligent mechatronics.

[35]  D. Croft,et al.  Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .

[36]  Bijan Shirinzadeh,et al.  Enhanced sliding mode motion tracking control of piezoelectric actuators , 2007 .

[37]  A. Dubra,et al.  Preisach classical and nonlinear modeling of hysteresis in piezoceramic deformable mirrors. , 2005, Optics express.

[38]  Philippe Lutz,et al.  Optimal Design of Piezoelectric Cantilevered Actuators With Guaranteed Performances by Using Interval Techniques , 2014, IEEE/ASME Transactions on Mechatronics.

[39]  Micky Rakotondrabe,et al.  Characterization, Modeling and H∞ control of n-DOF Piezoelectric Actuators: application to A 3-DOF Precise Positioner , 2016 .

[40]  A. J. Fleming,et al.  Control of Piezoelectric Benders Using a Charge Drive , 2014 .

[41]  H. Park,et al.  Aerodynamic force generation of an insect-inspired flapper actuated by a compressed unimorph actuator , 2009 .

[42]  Philippe Lutz,et al.  Plurilinear Modeling and discrete μ-Synthesis Control of a Hysteretic and Creeped Unimorph Piezoelectric Cantilever , 2006, 2006 9th International Conference on Control, Automation, Robotics and Vision.

[43]  Micky Rakotondrabe Smart Materials-Based Actuators at the Micro/Nano-Scale , 2013 .

[44]  Micky Rakotondrabe,et al.  Multi-mode vibration suppression in 2-DOF piezoelectric systems using zero placement input shaping technique , 2015, Commercial + Scientific Sensing and Imaging.

[45]  J. Wen,et al.  Preisach modeling of piezoceramic and shape memory alloy hysteresis , 1995, Proceedings of International Conference on Control Applications.

[46]  Radhika Nagpal,et al.  Flight of the robobees. , 2013, Scientific American.

[47]  Ronald S. Fearing,et al.  High lift force with 275 Hz wing beat in MFI , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[48]  Gi Sang Choi,et al.  A study on position control of piezoelectric actuators , 1997, ISIE '97 Proceeding of the IEEE International Symposium on Industrial Electronics.

[49]  Ephrahim Garcia,et al.  Piezoelectric actuation systems: optimization of driving electronics , 1996, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[50]  H. Park,et al.  Modification of a Four-Bar Linkage System for a Higher Optimal Flapping Frequency , 2011 .

[52]  Microsystème à ailes vibrantes: utilisation des technologies MEMS pour la réalisation d'un microdrone bioinspiré , 2010 .

[53]  Qingze Zou,et al.  Iterative control of dynamics-coupling-caused errors in piezoscanners during high-speed AFM operation , 2005, IEEE Transactions on Control Systems Technology.

[54]  Philippe Lutz,et al.  Force estimation in a piezoelectric cantilever using the inverse-dynamics-based UIO technique , 2009, 2009 IEEE International Conference on Robotics and Automation.

[55]  H. Eisenbeiss A MINI UNMANNED AERIAL VEHICLE (UAV): SYSTEM OVERVIEW AND IMAGE ACQUISITION , 2004 .

[56]  Philippe Lutz,et al.  Combining H ∞ approach and interval tools to design a low order and robust controller for systems with parametric uncertainties: application to piezoelectric actuators , 2012, Int. J. Control.

[57]  Xinkai Chen,et al.  Adaptive Sliding-Mode Position Control for Piezo-Actuated Stage , 2008, IEEE Transactions on Industrial Electronics.

[58]  Mohammad Sheikh Sofla,et al.  Hysteresis-observer based robust tracking control of piezoelectric actuators , 2010, Proceedings of the 2010 American Control Conference.

[60]  K. Leang,et al.  Design and Control of a Three-Axis Serial-Kinematic High-Bandwidth Nanopositioner , 2012, IEEE/ASME Transactions on Mechatronics.

[61]  Yassine Haddab,et al.  Force estimation in a 2-DoF piezoelectric actuator by using the inverse-dynamics based unknown input observer technique , 2015, Commercial + Scientific Sensing and Imaging.

[62]  S. O. R. Moheimani,et al.  Two sensor based H∞ control of a piezoelectric tube scanner , 2008 .

[63]  H. Park,et al.  Characteristics of an Insect-mimicking Flapping System Actuated by a Unimorph Piezoceramic Actuator , 2008 .

[64]  Abdenbi Mohand-Ousaid,et al.  3D-Printing: A promising technology to design three-dimensional microsystems , 2016, 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS).

[65]  Philippe Lutz,et al.  Design of a Fixed‐Order RST Controller for Interval Systems: Application to the Control of Piezoelectric Actuators , 2013 .

[66]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[67]  Micky Rakotondrabe,et al.  Backstepping-based robust-adaptive control of a nonlinear 2-DOF piezoactuator , 2015 .

[68]  Micky Rakotondrabe,et al.  Bouc–Wen Modeling and Inverse Multiplicative Structure to Compensate Hysteresis Nonlinearity in Piezoelectric Actuators , 2011, IEEE Transactions on Automation Science and Engineering.

[69]  Robert J. Wood,et al.  The First Takeoff of a Biologically Inspired At-Scale Robotic Insect , 2008, IEEE Transactions on Robotics.