Joint Bayesian Component Separation and CMB Power Spectrum Estimation

We describe and implement an exact, flexible, and computationally efficient algorithm for joint component separation and CMB power spectrum estimation, building on a Gibbs sampling framework. Two essential new features are (1) conditional sampling of foreground spectral parameters and (2) joint sampling of all amplitude-type degrees of freedom (e.g., CMB, foreground pixel amplitudes, and global template amplitudes) given spectral parameters. Given a parametric model of the foreground signals, we estimate efficiently and accurately the exact joint foreground-CMB posterior distribution and, therefore, all marginal distributions such as the CMB power spectrum or foreground spectral index posteriors. The main limitation of the current implementation is the requirement of identical beam responses at all frequencies, which restricts the analysis to the lowest resolution of a given experiment. We outline a future generalization to multiresolution observations. To verify the method, we analyze simple models and compare the results to analytical predictions. We then analyze a realistic simulation with properties similar to the 3 yr WMAP data, downgraded to a common resolution of 3? FWHM. The results from the actual 3 yr WMAP temperature analysis are presented in a companion Letter.

[1]  H. K. Eriksen,et al.  A re-analysis of the three-year WMAP temperature power spectrum and likelihood , 2006 .

[2]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[3]  Max Tegmark,et al.  A method for subtracting foregrounds from multifrequency CMB sky maps , 1996 .

[4]  Douglas P. Finkbeiner,et al.  A Full-Sky Hα Template for Microwave Foreground Prediction , 2003, astro-ph/0301558.

[5]  H. K. Eriksen,et al.  On Foreground Removal from the Wilkinson Microwave Anisotropy Probe Data by an Internal Linear Combination Method: Limitations and Implications , 2004, astro-ph/0403098.

[6]  Oliver Zahn,et al.  Detection of gravitational lensing in the cosmic microwave background , 2007, 0705.3980.

[7]  Benjamin D. Wandelt,et al.  Global, Exact Cosmic Microwave Background Data Analysis Using Gibbs Sampling , 2004 .

[8]  C. L. Kuo,et al.  Improved measurements of the CMB power spectrum with ACBAR , 2007 .

[9]  R. B. Barreiro,et al.  Foreground separation using a flexible maximum-entropy algorithm: an application to COBE data , 2004 .

[10]  H. K. Eriksen,et al.  Preprint typeset using L ATEX style emulateapj v. 6/22/04 CMB COMPONENT SEPARATION BY PARAMETER ESTIMATION , 2008 .

[11]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[12]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[13]  A. Lasenby,et al.  Foreground separation methods for satellite observations of the cosmic microwave background , 1998, astro-ph/9806387.

[14]  J. R. Bond,et al.  Extended Mosaic Observations with the Cosmic Background Imager , 2004 .

[15]  H. K. Eriksen,et al.  ESTIMATION OF POLARIZED POWER SPECTRA BY GIBBS SAMPLING , 2007 .

[16]  E. Leitch,et al.  FIRST SEASON QUaD CMB TEMPERATURE AND POLARIZATION POWER SPECTRA , 2008 .

[17]  Simon Prunet,et al.  Fast Analysis of Inhomogenous Megapixel Cosmic Microwave Background Maps , 2001 .

[18]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[19]  D. Maino,et al.  Astrophysical component separation of COBE-DMR 4-yr data with FastICA , 2003 .

[20]  M. Hobson,et al.  All-sky component separation for the Planck mission , 2001, astro-ph/0105432.

[21]  G. Zotti,et al.  All-sky astrophysical component separation with Fast Independent Component Analysis (FastICA) , 2001, astro-ph/0108362.

[22]  C. Dickinson,et al.  Towards a free–free template for CMB foregrounds , 2003, astro-ph/0302024.

[23]  Davide Maino,et al.  Angular power spectrum of the fastica cosmic microwave background component from Background Emission Anisotropy Scanning Telescope data , 2006 .

[24]  G. Giardino,et al.  Towards a model of full-sky Galactic synchrotron intensity and linear polarisation: A re-analysis of the Parkes data , 2002, astro-ph/0202520.

[25]  H. K. Eriksen,et al.  Power Spectrum Estimation from High-Resolution Maps by Gibbs Sampling , 2004 .

[26]  U. Toronto,et al.  Estimating the power spectrum of the cosmic microwave background , 1997, astro-ph/9708203.

[27]  Max Tegmark,et al.  High resolution foreground cleaned CMB map from WMAP , 2003, astro-ph/0302496.

[28]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[29]  George E. P. Box,et al.  Bayesian Inference in Statistical Analysis: Box/Bayesian , 1992 .

[30]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission , 2003, astro-ph/0302208.

[31]  C. H. Anderson,et al.  Application of Monte Carlo Algorithms to the Bayesian Analysis of the Cosmic Microwave Background , 2002, astro-ph/0209560.

[32]  W. N. Brandt,et al.  Separation of Foreground Radiation from Cosmic Microwave Background Anisotropy Using Multifrequency Measurements , 1994 .

[33]  Krzysztof M. Gorski On determining the spectrum of primordial inhomogeneity from the COBE DMR sky maps: Method , 1994 .

[34]  E. L. Wright,et al.  Angular power spectrum of the microwave background anisotropy seen by the COBE differential microwave radiometer , 1994 .

[35]  A. N. Lasenby,et al.  All-sky component separation in the presence of anisotropic noise and dust temperature variations , 2004 .

[36]  H. K. Eriksen,et al.  Cosmological parameter constraints as derived from the Wilkinson Microwave Anisotropy Probe data via Gibbs sampling and the Blackwell-Rao estimator , 2005 .

[37]  M. Halpern,et al.  Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: temperature analysis , 2006 .

[38]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[39]  Rajib Saha,et al.  A Reanalysis of the 3 Year Wilkinson Microwave Anisotropy Probe Temperature Power Spectrum and Likelihood , 2007 .

[40]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[41]  G. Efstathiou Myths and truths concerning estimation of power spectra: the case for a hybrid estimator , 2003 .

[42]  C. Baccigalupi,et al.  Separating polarized cosmological and galactic emissions for cosmic microwave background B-mode polarization experiments , 2005, astro-ph/0505381.

[43]  H. K. Eriksen,et al.  Bayesian Analysis of the Low-Resolution Polarized 3 Year WMAP Sky Maps , 2007, 0705.3643.

[44]  J. R. Bond,et al.  Implications of the Cosmic Background Imager Polarization Data , 2007 .

[45]  E. L. Wright,et al.  Power Spectrum of Primordial Inhomogeneity Determined from the FOUR-Year COBE DMR Sky Maps , 1996, astro-ph/9601063.

[46]  Edward J. Wollack,et al.  Three Year Wilkinson Microwave Anistropy Probe (WMAP) Observations: Polarization Analysis , 2006, astro-ph/0603450.

[47]  H. K. Eriksen,et al.  The Joint Large-Scale Foreground-CMB Posteriors of the 3 Year WMAP Data , 2007, 0709.1037.

[48]  Michael Seiffert,et al.  Cosmic Microwave Background Component Separation by Parameter Estimation , 2005, astro-ph/0508268.

[49]  P. A. R. Ade,et al.  A Measurement of the CMB EE Spectrum from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507514.

[50]  M. Bersanelli,et al.  Angular power spectrum of the FastICA CMB component from BEAST data , 2005 .

[51]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .