Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors

Ferroelectrics are promising for nonvolatile memories. However, the difficulty of fabricating ferroelectric layers and integrating them into complementary metal oxide semiconductor (CMOS) devices has hindered rapid scaling. Hafnium oxide is a standard material available in CMOS processes. Ferroelectricity in Si-doped hafnia was first reported in 2011, and this has revived interest in using ferroelectric memories for various applications. Ferroelectric hafnia with matured atomic layer deposition techniques is compatible with three-dimensional capacitors and can solve the scaling limitations in 1-transistor-1-capacitor (1T-1C) ferroelectric random-access memories (FeRAMs). For ferroelectric field-effect-transistors (FeFETs), the low permittivity and high coercive field E c of hafnia ferroelectrics are beneficial. The much higher E c of ferroelectric hafnia, however, makes high endurance a challenge. This article summarizes the current status of ferroelectricity in hafnia and explains how major issues of 1T-1C FeRAMs and FeFETs can be solved using this material system.

[1]  Young Jae Kwon,et al.  Time-Dependent Negative Capacitance Effects in Al2O3/BaTiO3 Bilayers. , 2016, Nano letters.

[2]  Asif Islam Khan,et al.  Effects of the Variation of Ferroelectric Properties on Negative Capacitance FET Characteristics , 2016, IEEE Transactions on Electron Devices.

[3]  T. Mitsui Ferroelectrics and Antiferroelectrics , 2018 .

[4]  Christoph Adelmann,et al.  Impact of different dopants on the switching properties of ferroelectric hafniumoxide , 2014 .

[5]  Uwe Schroeder,et al.  On the structural origins of ferroelectricity in HfO2 thin films , 2015 .

[6]  R. Hoffmann,et al.  Nanosecond Polarization Switching and Long Retention in a Novel MFIS-FET Based on Ferroelectric $\hbox{HfO}_{2}$ , 2012, IEEE Electron Device Letters.

[7]  Thomas Mikolajick,et al.  Incipient Ferroelectricity in Al‐Doped HfO2 Thin Films , 2012 .

[8]  Michael Hoffmann,et al.  Complex Internal Bias Fields in Ferroelectric Hafnium Oxide. , 2015, ACS applied materials & interfaces.

[9]  Paul J. McWhorter,et al.  Physics of the ferroelectric nonvolatile memory field effect transistor , 1992 .

[10]  S. Sakai,et al.  Metal-ferroelectric-insulator-semiconductor memory FET with long retention and high endurance , 2004, IEEE Electron Device Letters.

[11]  T. Mikolajick,et al.  Impact of layer thickness on the ferroelectric behaviour of silicon doped hafnium oxide thin films , 2013 .

[12]  C. Hwang,et al.  Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment. , 2017, Nanoscale.

[13]  Jacob L. Jones,et al.  A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants , 2017 .

[14]  T. Ma,et al.  Why Is FE–HfO2 More Suitable Than PZT or SBT for Scaled Nonvolatile 1-T Memory Cell? A Retention Perspective , 2016, IEEE Electron Device Letters.

[15]  S. Natarajan,et al.  A 64-Mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process , 2004, IEEE Journal of Solid-State Circuits.

[16]  Thomas Mikolajick,et al.  Ferroelectric Hafnium Oxide Based Materials and Devices: Assessment of Current Status and Future Prospects , 2015 .

[17]  Thomas Mikolajick,et al.  Charge-Trapping Phenomena in HfO2-Based FeFET-Type Nonvolatile Memories , 2016, IEEE Transactions on Electron Devices.

[18]  J. Robertson High dielectric constant oxides , 2004 .

[19]  S. Datta,et al.  Use of negative capacitance to provide voltage amplification for low power nanoscale devices. , 2008, Nano letters.

[20]  Dudley Allen Buck,et al.  Ferroelectrics for Digital Information Storage and Switching , 1952 .

[21]  Dmitrii Negrov,et al.  Ultrathin Hf0.5Zr0.5O2 Ferroelectric Films on Si. , 2016, ACS applied materials & interfaces.

[22]  U. Böttger,et al.  Ferroelectricity in hafnium oxide thin films , 2011 .

[23]  C. Hwang,et al.  Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1−xO2 films , 2015 .

[24]  Amit Kumar,et al.  Ferroelectricity in Si‐Doped HfO2 Revealed: A Binary Lead‐Free Ferroelectric , 2014, Advanced materials.

[25]  Doo Seok Jeong,et al.  Frustration of Negative Capacitance in Al2O3/BaTiO3 Bilayer Structure , 2016, Scientific Reports.

[26]  Michael J. Hoffmann,et al.  Ferroelectric phase transitions in nanoscale HfO2 films enable giant pyroelectric energy conversion and highly efficient supercapacitors , 2015 .

[27]  Lothar Frey,et al.  Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications , 2011 .

[28]  Mark A. Rodriguez,et al.  Pyroelectric response in crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films , 2017 .

[29]  S.Y. Lee,et al.  Future 1T1C FRAM technologies for highly reliable, high density FRAM , 2002, Digest. International Electron Devices Meeting,.

[30]  Thomas Mikolajick,et al.  Nonvolatile Random Access Memory and Energy Storage Based on Antiferroelectric Like Hysteresis in ZrO2 , 2016 .

[31]  Thomas Mikolajick,et al.  Material Aspects in Emerging Nonvolatile Memories , 2004 .

[32]  Lothar Frey,et al.  Ferroelectricity in yttrium-doped hafnium oxide , 2011 .

[33]  S. Slesazeck,et al.  Origin of the endurance degradation in the novel HfO2-based 1T ferroelectric non-volatile memories , 2014, 2014 IEEE International Reliability Physics Symposium.

[34]  Stefan Slesazeck,et al.  Physical Mechanisms behind the Field‐Cycling Behavior of HfO2‐Based Ferroelectric Capacitors , 2016 .

[35]  Chenming Hu,et al.  Self-Aligned, Gate Last, FDSOI, Ferroelectric Gate Memory Device With 5.5-nm Hf0.8Zr0.2O2, High Endurance and Breakdown Recovery , 2017, IEEE Electron Device Letters.

[36]  Fabrication and investigation of three-dimensional ferroelectric capacitors for the application of FeRAM , 2016 .

[37]  Lothar Frey,et al.  Ferroelectricity in Simple Binary ZrO2 and HfO2. , 2012, Nano letters.

[38]  U. Böttger,et al.  Domain Pinning: Comparison of Hafnia and PZT Based Ferroelectrics , 2017 .

[39]  Thomas Mikolajick,et al.  Phase transitions in ferroelectric silicon doped hafnium oxide , 2011 .

[40]  Alfred Kersch,et al.  The Origin of Ferroelectricity in Hf$_{x}$ Zr$_{1-x}$ O$_2$: A Computational Investigation and a Surface Energy Model , 2015 .

[41]  T. Mikolajick,et al.  Effect of acceptor doping on phase transitions of HfO2 thin films for energy-related applications , 2017 .

[42]  Michael J. Hoffmann,et al.  Direct Observation of Negative Capacitance in Polycrystalline Ferroelectric HfO2 , 2016 .

[43]  J. Scott,et al.  Ferroelectrics go bananas , 2008 .

[44]  T. Mikolajick,et al.  Correspondence - Dynamic leakage current compensation revisited , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[45]  C. Hwang,et al.  Understanding the formation of the metastable ferroelectric phase in hafnia-zirconia solid solution thin films. , 2018, Nanoscale.

[46]  David Bondurant,et al.  Ferroelectronic ram memory family for critical data storage , 1990 .

[47]  Patrick Polakowski,et al.  Ferroelectricity in undoped hafnium oxide , 2015 .

[48]  Tengyu Ma,et al.  Why is nonvolatile ferroelectric memory field-effect transistor still elusive? , 2002, IEEE Electron Device Letters.

[49]  K. Mistry,et al.  The High-k Solution , 2007, IEEE Spectrum.