A Practical Guide to the Recovery of Wavelet Coefficients from Fourier Measurements

In a series of recent papers [B. Adcock, A. C. Hansen, and C. Poon, Appl. Comput. Harmon. Anal., 36 (2014), pp. 387--415; B. Adcock, M. Gataric, and A. C. Hansen, SIAM J. Imaging Sci., 7 (2014), pp. 1690--1723; Adcock et al., SIAM J. Math. Anal., 47 (2015), pp. 1196--1233], it was shown that one can optimally recover the wavelet coefficients of an unknown compactly supported function from pointwise evaluations of its Fourier transform via the method of generalized sampling. While these papers focused on the optimality of generalized sampling in terms of its stability and error bounds, the current paper explains how this optimal method can be implemented to yield a computationally efficient algorithm. In particular, we show that generalized sampling has a computational complexity of $\mathcal{O}\left(M(N)\log N\right)$ when recovering the first $N$ boundary-corrected wavelet coefficients of an unknown compactly supported function from $M(N)$ Fourier samples. Therefore, due to the linear correspondences bet...

[1]  Gitta Kutyniok,et al.  Linear Stable Sampling Rate: Optimality of 2D Wavelet Reconstructions from Fourier Measurements , 2015, SIAM J. Math. Anal..

[2]  Michael Unser,et al.  Consistent Sampling and Signal Recovery , 2007, IEEE Transactions on Signal Processing.

[3]  Albert F. Lawrence,et al.  Electron Tomography and Multiscale Biology , 2012, Theory and Applications of Models of Computation.

[4]  Ben Adcock,et al.  On Stable Reconstructions from Nonuniform Fourier Measurements , 2013, SIAM J. Imaging Sci..

[5]  A. Jardine,et al.  Helium-3 spin-echo: Principles and application to dynamics at surfaces , 2009 .

[6]  J. Benedetto Irregular sampling and frames , 1993 .

[7]  Klaas Paul Pruessmann,et al.  A Fast Wavelet-Based Reconstruction Method for Magnetic Resonance Imaging , 2011, IEEE Transactions on Medical Imaging.

[8]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[9]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[10]  Ben Adcock,et al.  On optimal wavelet reconstructions from Fourier samples: linearity and universality of the stable sampling rate , 2012, ArXiv.

[11]  Anne Gelb,et al.  A Frame Theoretic Approach to the Nonuniform Fast Fourier Transform , 2014, SIAM J. Numer. Anal..

[12]  Yonina C. Eldar,et al.  General Framework for Consistent Sampling in Hilbert Spaces , 2005, Int. J. Wavelets Multiresolution Inf. Process..

[13]  A. Macovski,et al.  Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. , 1991, IEEE transactions on medical imaging.

[14]  Akram Aldroubi,et al.  Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces , 2001, SIAM Rev..

[15]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[16]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[17]  M. Lustig,et al.  Compressed Sensing MRI , 2008, IEEE Signal Processing Magazine.

[18]  Bénédicte M A Delattre,et al.  Spiral demystified. , 2010, Magnetic resonance imaging.

[19]  Ben Adcock,et al.  Weighted frames of exponentials and stable recovery of multidimensional functions from nonuniform Fourier samples , 2014, 1405.3111.

[20]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[21]  Ben Adcock,et al.  Optimal wavelet reconstructions from Fourier samples via generalized sampling , 2013 .

[22]  Ben Adcock,et al.  A Generalized Sampling Theorem for Stable Reconstructions in Arbitrary Bases , 2010, 1007.1852.

[23]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[24]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[25]  Karlheinz Gröchenig,et al.  Pseudospectral Fourier reconstruction with the modified Inverse Polynomial Reconstruction Method , 2010, J. Comput. Phys..

[26]  Michael Unser,et al.  A general sampling theory for nonideal acquisition devices , 1994, IEEE Trans. Signal Process..

[27]  Alex Jones,et al.  Continuous Compressed Sensing of Inelastic and Quasielastic Helium Atom Scattering Spectra , 2015, 1510.00555.

[28]  B. Borden,et al.  Synthetic-aperture imaging from high-Doppler-resolution measurements , 2005 .

[29]  J. Mixter Fast , 2012 .

[30]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[31]  Yonina C. Eldar Sampling Without Input Constraints: Consistent Reconstruction in Arbitrary Spaces , 2004 .

[32]  T. Strohmer,et al.  Efficient numerical methods in non-uniform sampling theory , 1995 .

[33]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[34]  Ben Adcock,et al.  Generalized Sampling and Infinite-Dimensional Compressed Sensing , 2016, Found. Comput. Math..

[35]  Andreas Rieder,et al.  Wavelets: Theory and Applications , 1997 .

[36]  Clarice Poon,et al.  A Consistent and Stable Approach to Generalized Sampling , 2014 .

[37]  Jeffrey A. Fessler,et al.  Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..

[38]  Ben Adcock,et al.  BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING , 2013, Forum of Mathematics, Sigma.

[39]  Jeffrey A. Fessler,et al.  Fast, iterative image reconstruction for MRI in the presence of field inhomogeneities , 2003, IEEE Transactions on Medical Imaging.

[40]  Ben Adcock,et al.  Beyond Consistent Reconstructions: Optimality and Sharp Bounds for Generalized Sampling, and Application to the Uniform Resampling Problem , 2013, SIAM J. Math. Anal..

[41]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.