Stable Discretizations of Convection-Diffusion Problems via Computable Negative-Order Inner Products

A new functional framework for consistently stabilizing discrete approximations to convection-diffusion problems was recently proposed by the authors. The key ideas are the evaluation of the residual in an inner product of the type H-1/2 (unlike classical SUPG methods, which use elemental weighted L2-inner products) and the realization of this inner product via explicitly computable multilevel decompositions of function spaces (such as those given by wavelets or hierarchical finite elements). In this paper, we first provide further motivations for our approach. Next, we carry on a detailed analysis of the method, which covers all regimes (convection-dominated and diffusion-dominated). A consistent part of the analysis justifies the use of easily computable truncated forms of the stabilizing inner product. Numerical results, in close agreement with the theory, are given at the end of the paper.

[1]  F. Brezzi,et al.  A relationship between stabilized finite element methods and the Galerkin method with bubble functions , 1992 .

[2]  Silvia Bertoluzza,et al.  Negative norm stabilization of convection-diffusion problems , 2000, Appl. Math. Lett..

[3]  C. Bardos,et al.  Perturbations singulières et prolongements maximaux d'opérateurs positifs , 1973 .

[4]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[5]  Willy Dörfler,et al.  Uniform A Priori Estimates for Singularly Perturbed Elliptic Equations in Multidimensions , 1999 .

[6]  Peter Oswald,et al.  Multilevel Finite Element Approximation , 1994 .

[7]  Stefano Grivet-Talocia,et al.  WAVELETS ON THE INTERVAL WITH OPTIMAL LOCALIZATION , 2000 .

[8]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[9]  H. Triebel Theory Of Function Spaces , 1983 .

[10]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[11]  Peter Oswald,et al.  Finite element approximation , 1994 .

[12]  Endre Süli,et al.  Residual-free bubbles for advection-diffusion problems: the general error analysis , 2000, Numerische Mathematik.

[13]  W. Dahmen Stability of Multiscale Transformations. , 1995 .

[14]  Hans Triebel,et al.  Fourier analysis and function spaces , 1977 .

[15]  T. Wolff A note on interpolation spaces , 1982 .

[16]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[17]  T. Hughes,et al.  Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .

[18]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[19]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[20]  M. Stynes,et al.  Numerical methods for singularly perturbed differential equations : convection-diffusion and flow problems , 1996 .

[21]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[22]  R. Hochmuth Wavelet Characterizations for Anisotropic Besov Spaces , 2002 .

[23]  Claudio Canuto,et al.  The wavelet element method. Part I: Construction and analysis. , 1997 .

[24]  S. Bertoluzza Stabilization by multiscale decomposition , 1998 .

[25]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[26]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[27]  Joseph E. Pasciak,et al.  A least-squares approach based on a discrete minus one inner product for first order systems , 1997, Math. Comput..