Suppression and facilitation of human neural responses

Efficient neural processing depends on regulating responses through suppression and facilitation of neural activity. Utilizing a well-known visual motion paradigm that evokes behavioral suppression and facilitation, and combining 5 different methodologies (behavioral psychophysics, computational modeling, functional MRI, pharmacology, and magnetic resonance spectroscopy), we provide evidence that challenges commonly held assumptions about the neural processes underlying suppression and facilitation. We show that: 1) both suppression and facilitation can emerge from a single, computational principle – divisive normalization; there is no need to invoke separate neural mechanisms, 2) neural suppression and facilitation in the motion-selective area MT mirror perception, but strong suppression also occurs in earlier visual areas, and 3) suppression is not driven by GABA-mediated inhibition. Thus, while commonly used spatial suppression paradigms may provide insight into neural response magnitudes in visual areas, they cannot be used to infer neural inhibition.

[1]  S. Cummings,et al.  Designing Clinical Research: An Epidemiologic Approach , 1988 .

[2]  H. Adesnik,et al.  A neural circuit for spatial summation in visual cortex , 2012, Nature.

[3]  Ian Nauhaus,et al.  Contrast Dependence and Differential Contributions from Somatostatin- and Parvalbumin-Expressing Neurons to Spatial Integration in Mouse V1 , 2013, The Journal of Neuroscience.

[4]  David J McGonigle,et al.  Diurnal stability of γ‐aminobutyric acid concentration in visual and sensorimotor cortex , 2009, Journal of magnetic resonance imaging : JMRI.

[5]  Xianpeng Zhuang,et al.  Impaired Center-Surround Suppression in Patients with Alzheimer's Disease. , 2016, Journal of Alzheimer's disease : JAD.

[6]  C. John Evans,et al.  Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA , 2014, NeuroImage.

[7]  Matthew R. Krause,et al.  Synaptic and Network Mechanisms of Sparse and Reliable Visual Cortical Activity during Nonclassical Receptive Field Stimulation , 2010, Neuron.

[8]  Alessandra Angelucci,et al.  Strong Recurrent Networks Compute the Orientation Tuning of Surround Modulation in the Primate Primary Visual Cortex , 2012, The Journal of Neuroscience.

[9]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[10]  S. Morad,et al.  Ceramide-orchestrated signalling in cancer cells , 2012, Nature Reviews Cancer.

[11]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  Tatiana A. Stroganova,et al.  Abnormal Size-Dependent Modulation of Motion Perception in Children with Autism Spectrum Disorder (ASD) , 2017, Front. Neurosci..

[13]  H. Ozeki,et al.  Relationship between Excitation and Inhibition Underlying Size Tuning and Contextual Response Modulation in the Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[14]  David J. Heeger,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .

[15]  Á. Pascual-Leone,et al.  Improved Motion Perception and Impaired Spatial Suppression following Disruption of Cortical Area MT/V5 , 2011, The Journal of Neuroscience.

[16]  Marvin M Chun,et al.  Enhanced Visual Motion Perception in Major Depressive Disorder , 2009, The Journal of Neuroscience.

[17]  R. Born Center-surround interactions in the middle temporal visual area of the owl monkey. , 2000, Journal of neurophysiology.

[18]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[19]  Jong H. Yoon,et al.  GABA Concentration Is Reduced in Visual Cortex in Schizophrenia and Correlates with Orientation-Specific Surround Suppression , 2010, The Journal of Neuroscience.

[20]  Randolph Blake,et al.  Perceptual consequences of centre–surround antagonism in visual motion processing , 2003, Nature.

[21]  Li I. Zhang,et al.  Visual Representations by Cortical Somatostatin Inhibitory Neurons—Selective But with Weak and Delayed Responses , 2010, The Journal of Neuroscience.

[22]  Evan S. Schaffer,et al.  Inhibitory Stabilization of the Cortical Network Underlies Visual Surround Suppression , 2009, Neuron.

[23]  Christopher C. Pack,et al.  Bidirectional manipulation of GABAergic inhibition in MT: A comparison of neuronal and psychophysical performance , 2014 .

[24]  Roger B. H. Tootell,et al.  Segregation of global and local motion processing in primate middle temporal visual area , 1992, Nature.

[25]  A. Leventhal,et al.  GABA and Its Agonists Improved Visual Cortical Function in Senescent Monkeys , 2003, Science.

[26]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[27]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[28]  Allison B. Sekuler,et al.  Spatial characteristics of motion-sensitive mechanisms change with age and stimulus spatial frequency , 2012, Vision Research.

[29]  B. Wandell,et al.  Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. , 2009, Journal of neurophysiology.

[30]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[31]  D. Tadin Suppressive mechanisms in visual motion processing: From perception to intelligence , 2015, Vision Research.

[32]  Michael-Paul Schallmo,et al.  The effects of orientation and attention during surround suppression of small image features: A 7 Tesla fMRI study , 2016, Journal of vision.

[33]  Jonas Larsson,et al.  GABA predicts visual intelligence , 2016, Neuroscience Letters.

[34]  Duje Tadin,et al.  A Substantial and Unexpected Enhancement of Motion Perception in Autism , 2013, The Journal of Neuroscience.

[35]  Richard B. Ivry,et al.  Individual differences in GABA content are reliable but are not uniform across the human cortex , 2016, NeuroImage.

[36]  N. Prins Psychophysics: A Practical Introduction , 2009 .

[37]  K. Hoffmann,et al.  Contribution of inhibitory mechanisms to direction selectivity and response normalization in macaque middle temporal area. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Allison M McKendrick,et al.  Center-surround visual motion processing in migraine. , 2010, Investigative ophthalmology & visual science.

[39]  Jenny C.A. Read,et al.  Assessment of epilepsy using noninvasive visual psychophysics tests of surround suppression , 2017, Physiological reports.

[40]  D. McCormick,et al.  GABA as an inhibitory neurotransmitter in human cerebral cortex. , 1989, Journal of neurophysiology.

[41]  Denis G. Pelli,et al.  ECVP '07 Abstracts , 2007, Perception.

[42]  G. Orban,et al.  Shape and Spatial Distribution of Receptive Fields and Antagonistic Motion Surrounds in the Middle Temporal Area (V5) of the Macaque , 1995, The European journal of neuroscience.

[43]  Sung Jun Joo,et al.  Long-Range, Pattern-Dependent Contextual Effects in Early Human Visual Cortex , 2011, Current Biology.

[44]  David J Heeger,et al.  Response Suppression in V1 Agrees with Psychophysics of Surround Masking , 2003, The Journal of Neuroscience.

[45]  Christopher C. Pack,et al.  Contrast dependence of suppressive influences in cortical area MT of alert macaque. , 2005, Journal of neurophysiology.

[46]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[47]  R. Edden,et al.  Gannet: A batch‐processing tool for the quantitative analysis of gamma‐aminobutyric acid–edited MR spectroscopy spectra , 2014, Journal of magnetic resonance imaging : JMRI.

[48]  Ashley D Harris,et al.  Tissue correction for GABA‐edited MRS: Considerations of voxel composition, tissue segmentation, and tissue relaxations , 2015, Journal of magnetic resonance imaging : JMRI.

[49]  A. Angelucci,et al.  Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. , 2006, Progress in brain research.

[50]  Christopher C. Pack,et al.  A neural basis for the spatial suppression of visual motion perception , 2016, bioRxiv.

[51]  Duje Tadin,et al.  Optimal size for perceiving motion decreases with contrast , 2005, Vision Research.

[52]  Christopher Patrick Taylor,et al.  Aging Reduces Center-Surround Antagonism in Visual Motion Processing , 2005, Neuron.

[53]  Tatsuo K Sato,et al.  An excitatory basis for divisive normalization in visual cortex , 2016, Nature Neuroscience.

[54]  J. E. Dunn,et al.  The epidemiologic approach. , 1979, JAMA.

[55]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[56]  M. Garwood,et al.  Simultaneous in vivo spectral editing and water suppression , 1998, NMR in biomedicine.

[57]  H. Alkadhi,et al.  Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. , 1997, Brain : a journal of neurology.

[58]  Randolph Blake,et al.  Weakened Center-Surround Interactions in Visual Motion Processing in Schizophrenia , 2006, The Journal of Neuroscience.

[59]  D. Heeger,et al.  Vision as a Beachhead , 2017, Biological Psychiatry.

[60]  S. Murray,et al.  Attention Determines Contextual Enhancement versus Suppression in Human Primary Visual Cortex , 2015, The Journal of Neuroscience.

[61]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[62]  M. Carandini,et al.  GABAA Inhibition Controls Response Gain in Visual Cortex , 2011, The Journal of Neuroscience.

[63]  D. Angelaki,et al.  A computational perspective on autism , 2015, Proceedings of the National Academy of Sciences.

[64]  Huseyin Boyaci,et al.  Contrast Affects fMRI Activity in Middle Temporal Cortex Related to Center–Surround Interaction in Motion Perception , 2016, Front. Psychol..

[65]  Michael H Herzog,et al.  Lorazepam Strongly Prolongs Visual Information Processing , 2004, Neuropsychopharmacology.

[66]  W. Haefely,et al.  The biological basis of benzodiazepine actions. , 1983, Journal of psychoactive drugs.

[67]  Ignacio Serrano-Pedraza,et al.  Moderate acute alcohol intoxication has minimal effect on surround suppression measured with a motion direction discrimination task. , 2015, Journal of vision.

[68]  Victor A. F. Lamme,et al.  GABAA Agonist Reduces Visual Awareness: A Masking–EEG Experiment , 2012, Journal of Cognitive Neuroscience.