Empirical likelihood-based inference in generalized random coefficient autoregressive model with conditional moment restrictions

Abstract This paper concentrates on the parameter estimating strategy for the generalized random coefficient autoregressive (GRCA) model in the presence of the auxiliary information. We propose a weighted least squares estimate for the model parameters and empirical likelihood (EL) based weights are obtained through using these auxiliary information. The asymptotic distribution of our proposed estimator is normal distribution and the asymptotic variance is reduced compared to the least square (LS) estimator. Therefore, our method yields more efficient estimates. We also carry out some simulation experiments to assess the performance of the suggested estimator and illustrate the usefulness of this method through the analysis of a real time series data sets.

[1]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[2]  Art B. Owen,et al.  Empirical Likelihood for Linear Models , 1991 .

[3]  Xianbin Wu,et al.  Empirical likelihood for the smoothed LAD estimator in infinite variance autoregressive models , 2010 .

[4]  Shuang Cang,et al.  Time Series Analysis , 2012 .

[5]  Ngai Hang Chan,et al.  EMPIRICAL LIKELIHOOD FOR GARCH MODELS , 2006, Econometric Theory.

[6]  Patrik Guggenberger,et al.  Generalized Empirical Likelihood Tests in Time Series Models With Potential Identification Failure (joint with R.J.Smith), accepted for publication, Journal of Econometrics , 2005 .

[7]  Anthony Y. C. Kuk,et al.  Median Estimation in the Presence of Auxiliary Information , 1989 .

[8]  Barry G. Quinn,et al.  THE ESTIMATION OF RANDOM COEFFICIENT AUTOGRESSIVE MODELS. II , 1981 .

[9]  Lajos Horváth,et al.  Estimation in nonstationary random coefficient autoregressive models , 2009, 0903.0022.

[10]  Xu Liu,et al.  Distribution estimation with auxiliary information for missing data , 2011 .

[11]  Jianqing Fan Nonlinear Time Series , 2003 .

[12]  Jiahua Chen,et al.  Empirical likelihood estimation for ?nite populations and the e?ective usage of auxiliary informatio , 1993 .

[13]  B. G. Quinn,et al.  Random Coefficient Autoregressive Models: An Introduction , 1982 .

[14]  C. T. Isaki,et al.  Variance Estimation Using Auxiliary Information , 1983 .

[15]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[16]  B. G. Quinn,et al.  THE ESTIMATION OF RANDOM COEFFICIENT AUTOREGRESSIVE MODELS. I , 1980 .

[17]  Yong Zhang,et al.  Limit theory for random coefficient first-order autoregressive process under martingale difference error sequence , 2011, J. Comput. Appl. Math..

[18]  Zhi-Wen Zhao,et al.  Coefficient constancy test in generalized random coefficient autoregressive model , 2013, Appl. Math. Comput..

[19]  I. V. Basawa,et al.  Parameter estimation for generalized random coefficient autoregressive processes , 1998 .

[20]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[21]  Biao Zhang,et al.  M-estimation and quantile estimation in the presence of auxiliary information , 1995 .

[22]  Zhi-Wen Zhao,et al.  Statistical inference for generalized random coefficient autoregressive model , 2012, Math. Comput. Model..

[23]  A. Owen Empirical Likelihood Ratio Confidence Regions , 1990 .

[24]  J. Rao,et al.  On estimating distribution functions and quantiles from survey data using auxiliary information , 1990 .

[25]  Chenlei Leng,et al.  An empirical likelihood approach to quantile regression with auxiliary information , 2012 .

[26]  Autcha Araveeporn,et al.  Comparing random coefficient autoregressive model with and without autocorrelated errors by Bayesian analysis , 2017 .

[27]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .