Miscibility Gap Closure, Interface Morphology, and Phase Microstructure of 3D Li(x)FePO4 Nanoparticles from Surface Wetting and Coherency Strain.

We study the mesoscopic effects which modify phase-segregation in LixFePO4 nanoparticles using a multiphysics phase-field model implement on a high performance cluster. We simulate 3D spherical particles of radii from 3 to 40 nm and examine the equilibrium microstructure and voltage profiles as they depend on size and overall lithiation. The model includes anisotropic, concentration-dependent elastic moduli, misfit strain, and facet dependent surface wetting within a Cahn-Hilliard formulation. We find that the miscibility gap vanishes for particles of radius ∼5 nm, and the solubility limits change with overall particle lithiation. Surface wetting stabilizes minority phases by aligning them with energetically beneficial facets. The equilibrium voltage profile is modified by these effects in magnitude, and the length and slope of the voltage plateau during two-phase coexistence.

[1]  Matthias Scheffler,et al.  Composition, structure, and stability of RuO2(110) as a function of oxygen pressure , 2001 .

[2]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[3]  Thomas J. Richardson,et al.  Metastable Solid-Solution Phases in the LiFePO4 ∕ FePO4 System , 2007 .

[4]  John W. Cahn,et al.  Critical point wetting , 1977 .

[5]  Guoying Chen,et al.  Mesoscale phase distribution in single particles of LiFePO4 following lithium deintercalation. , 2013, Chemistry of materials : a publication of the American Chemical Society.

[6]  Rahul Malik,et al.  Kinetics of non-equilibrium lithium incorporation in LiFePO4. , 2011, Nature materials.

[7]  R. Kostecki,et al.  IR near-field spectroscopy and imaging of single Li(x)FePO4 microcrystals. , 2015, Nano letters.

[8]  K. Zaghib,et al.  Relationship between local structure and electrochemical performance of LiFePO4 in Li-ion batteries , 2008 .

[9]  Phase field theory of heterogeneous crystal nucleation. , 2006, Physical review letters.

[10]  S. Hara,et al.  A method for calculating surface stress and surface elastic constants by molecular dynamics: application to the surface of crystal and amorphous silicon , 2004 .

[11]  Martin Z. Bazant,et al.  Phase Transformation Dynamics in Porous Battery Electrodes , 2014, 1401.7072.

[12]  S. M. Lala,et al.  Spectroscopic studies ofLixFePO4andLixM0.03Fe0.97PO4(M=Cr,Cu,Al,Ti) , 2005 .

[13]  Daniel A. Cogswell,et al.  Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge. , 2011, Nano letters.

[14]  G. Ceder,et al.  Elastic properties of olivine LixFePO4 from first principles , 2006 .

[15]  T. Doi,et al.  Elastically constrained phase-separation dynamics competing with the charge process in the LiFePO4/FePO4 system , 2013 .

[16]  J. Bhattacharya,et al.  Understanding Li diffusion in Li-intercalation compounds. , 2013, Accounts of Chemical Research.

[17]  Atsuo Yamada,et al.  Phase Change in Li x FePO4 , 2005 .

[18]  Gerbrand Ceder,et al.  Configurational electronic entropy and the phase diagram of mixed-valence oxides: the case of LixFePO4. , 2006, Physical review letters.

[19]  Karim Zaghib,et al.  Surface effects on electrochemical properties of nano-sized LiFePO4 , 2011 .

[20]  Steven Dargaville,et al.  The persistence of phase-separation in LiFePO4 with two-dimensional Li+ transport : the Cahn-Hilliard-reaction equation and the role of defects , 2013 .

[21]  J. Yvonnet,et al.  Finite element model of ionic nanowires with size-dependent mechanical properties determined by ab initio calculations , 2011 .

[22]  W. Craig Carter,et al.  Size-Dependent Lithium Miscibility Gap in Nanoscale Li1 − x FePO4 , 2007 .

[23]  W. Craig Carter,et al.  Electrochemically Induced Phase Transformation in Nanoscale Olivines Li1−xMPO4 (M = Fe, Mn) , 2008 .

[24]  Montse Casas-Cabanas,et al.  Room-temperature single-phase Li insertion/extraction in nanoscale Li(x)FePO4. , 2008, Nature materials.

[25]  A. G. Khachaturi︠a︡n Theory of structural transformations in solids , 1983 .

[26]  Damian Burch,et al.  Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. , 2009, Nano letters.

[27]  Milo R. Dorr,et al.  Anisotropic Phase Boundary Morphology in Nanoscale Olivine Electrode Particles , 2011 .

[28]  Gerbrand Ceder,et al.  Configurational Electronic Entropy and the Phase Diagram of Mixed-Valence Oxides: The Case of Li$_x$FePO$_4$ , 2006 .

[29]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .

[30]  Yoji Sakurai,et al.  Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries , 2001 .

[31]  Wolfgang Dreyer,et al.  The thermodynamic origin of hysteresis in insertion batteries. , 2010, Nature materials.

[32]  M. Wagemaker,et al.  Properties and promises of nanosized insertion materials for Li-ion batteries. , 2013, Accounts of chemical research.

[33]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[34]  Daniel A. Cogswell,et al.  Theory of coherent nucleation in phase-separating nanoparticles. , 2013, Nano letters.

[35]  Daniel A. Cogswell,et al.  Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. , 2011, ACS nano.

[36]  Martin Z Bazant,et al.  Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. , 2012, Accounts of chemical research.

[37]  Martin Z. Bazant,et al.  Phase Separation Dynamics in Isotropic Ion-Intercalation Particles , 2013, SIAM J. Appl. Math..

[38]  Y. Meng,et al.  First-principles study of surface properties of LiFePO4: Surface energy, structure, Wulff shape, and surface redox potential , 2007 .

[39]  Vijay B. Shenoy,et al.  Size-dependent elastic properties of nanosized structural elements , 2000 .

[40]  Haoshen Zhou,et al.  Two-phase transition of Li-intercalation compounds in Li-ion batteries , 2014 .

[41]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[42]  Takashi Ida,et al.  Isolation of Solid Solution Phases in Size‐Controlled LixFePO4 at Room Temperature , 2009 .

[43]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[44]  Thomas J. Richardson,et al.  Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition , 2006 .

[45]  Alain Mauger,et al.  Study of the Li-insertion/extraction process in LiFePO4/FePO4 , 2009 .

[46]  Anders Logg,et al.  A compiler for variational forms , 2006, TOMS.

[47]  Charles Delacourt,et al.  Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy , 2006 .

[48]  Marnix Wagemaker,et al.  Dynamic solubility limits in nanosized olivine LiFePO4. , 2011, Journal of the American Chemical Society.

[49]  Marnix Wagemaker,et al.  The Role of Surface and Interface Energy on Phase Stability of Nanosized Insertion Compounds , 2009, Advanced materials.

[50]  Ming Tang,et al.  Model for the Particle Size, Overpotential, and Strain Dependence of Phase Transition Pathways in Storage Electrodes: Application to Nanoscale Olivines , 2009 .

[51]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[52]  Marnix Wagemaker,et al.  Effect of Surface Energies and Nanoparticle Size Distribution on Open Circuit Voltage of Li-Electrodes , 2009 .

[53]  C. Delmas,et al.  Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. , 2008, Nature materials.