High electron mobility in nearly lattice-matched AlInN∕AlN∕GaN heterostructure field effect transistors

High electron mobility was achieved in Al1−xInxN∕AlN∕GaN (x=0.20–0.12) heterostructure field effect transistors (HFETs) grown by metal-organic chemical vapor deposition. Reduction of In composition from 20% to 12% increased the room temperature equivalent two-dimensional-electron-gas density from 0.90×1013to1.64×1013cm−2 with corresponding electron mobilities of 1600 and 1410cm2∕Vs, respectively. The 10K mobility reached 17600cm2∕Vs for the nearly lattice-matched Al0.82In0.18N∕AlN∕GaN heterostructure with a sheet carrier density of 9.6×1012cm−2. For comparison, the AlInN∕GaN heterostructure without the AlN spacer exhibited a high sheet carrier density (2.42×1013cm−2) with low mobility (120cm2∕Vs) at room temperature. The high mobility in our samples is in part attributed to ∼1nm AlN spacer which significantly reduces the alloy scattering as well as provides a smooth interface. The HFETs having gate dimensions of 1.5×40μm2 and a 5μm source-drain separation exhibited a maximum transconductance of ∼200mS∕mm ...

[1]  Eric Feltin,et al.  High electron mobility lattice-matched AlInN∕GaN field-effect transistor heterostructures , 2006 .

[2]  Takashi Jimbo,et al.  Characterization of different-Al-content AlxGa1−xN/GaN heterostructures and high-electron-mobility transistors on sapphire , 2003 .

[3]  Hadis Morko,et al.  Handbook of Nitride Semiconductors and Devices , 2008 .

[4]  James S. Speck,et al.  Two-dimensional electron-gas AlN/GaN heterostructures with extremely thin AlN barriers , 2000 .

[5]  M. Spencer,et al.  On the origin of the two-dimensional electron gas at the AlGaN/GaN heterostructure interface , 2005 .

[6]  High-quality InAlN/GaN heterostructures grown by metal–organic vapor phase epitaxy , 2006 .

[7]  Hywel Morgan,et al.  Dielectric spectroscopy of single cells: time domain analysis using Maxwell's mixture equation , 2007 .

[8]  Jürgen Christen,et al.  Metal-organic vapor phase epitaxy and properties of AlInN in the whole compositional range , 2007 .

[9]  Ho Won Jang,et al.  Mechanism of two-dimensional electron gas formation in AlxGa1-xN/GaN heterostructures , 2002 .

[10]  Debdeep Jena,et al.  High-mobility window for two-dimensional electron gases at ultrathin AlN∕GaN heterojunctions , 2007 .

[11]  J. Kuzmik,et al.  Power electronics on InAlN/(In)GaN: Prospect for a record performance , 2001, IEEE Electron Device Letters.

[12]  E. Alves,et al.  Anomalous ion channeling in AlInN/GaN bilayers: determination of the strain state. , 2006, Physical review letters.

[13]  Y.-F. Wu,et al.  High Al-content AlGaN/GaN MODFETs for ultrahigh performance , 1998, IEEE Electron Device Letters.

[14]  Eric Feltin,et al.  Progresses in III‐nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials , 2005 .

[15]  Osamu Oda,et al.  High-electron-mobility AlGaN∕AlN∕GaN heterostructures grown on 100-mm-diam epitaxial AlN/sapphire templates by metalorganic vapor phase epitaxy , 2004 .

[16]  James S. Speck,et al.  Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors , 2000 .

[17]  Jan Kuzmik,et al.  InAlN/(In)GaN high electron mobility transistors: some aspects of the quantum well heterostructure proposal , 2002 .

[18]  Nanostructural characterization and two-dimensional electron-gas properties in high-mobility AlGaN∕AlN∕GaN heterostructures grown on epitaxial AlN/sapphire templates , 2005 .

[19]  E. Kohn,et al.  High-sheet-charge–carrier-density AlInN∕GaN field-effect transistors on Si(111) , 2004 .