A note on the weak regularity theory for degenerate Kolmogorov equations
暂无分享,去创建一个
[1] C. Mouhot,et al. Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation , 2016, ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE.
[2] D. Duffy. Second‐Order Parabolic Differential Equations , 2013 .
[3] N. Trudinger. Pointwise estimates and quasilinear parabolic equations , 1968 .
[4] Cl'ement Mouhot,et al. Quantitative de Giorgi Methods in Kinetic Theory , 2021 .
[5] L. Silvestre,et al. On divergence-free drifts , 2010, 1010.6025.
[6] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[7] L. Hörmander. Hypoelliptic second order differential equations , 1967 .
[8] Harnack inequalities for functions in De Giorgi parabolic class , 1988 .
[9] J. Moser. A Harnack inequality for parabolic di2erential equations , 1964 .
[10] S. Polidoro,et al. On a class of hypoelliptic evolution operators , 1994 .
[11] D. Kinderlehrer,et al. An introduction to variational inequalities and their applications , 1980 .
[12] A. Pascucci,et al. Pointwise estimates for a class of non-homogeneous Kolmogorov equations , 2008 .
[13] Cyril Imbert,et al. LOG-TRANSFORM AND THE WEAK HARNACK INEQUALITY FOR KINETIC FOKKER-PLANCK EQUATIONS , 2021, Journal of the Institute of Mathematics of Jussieu.
[14] N. Trudinger,et al. Harnack inequalities for quasi-minima of variational integrals , 1984 .
[15] L. Silvestre,et al. The weak Harnack inequality for the Boltzmann equation without cut-off , 2016, Journal of the European Mathematical Society.
[16] A. Pascucci,et al. THE MOSER'S ITERATIVE METHOD FOR A CLASS OF ULTRAPARABOLIC EQUATIONS , 2004 .
[17] K. Nystrom,et al. The Dirichlet problem for Kolmogorov-Fokker-Planck type equations with rough coefficients , 2020, 2012.11410.
[18] S. Armstrong,et al. Variational methods for the kinetic Fokker-Planck equation , 2019, 1902.04037.
[19] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[20] S. Polidoro,et al. Moser’s estimates for degenerate Kolmogorov equations with non-negative divergence lower order coefficients , 2019, Nonlinear Analysis.
[21] J. Moser,et al. A NEW TECHNIQUE FOR THE CONSTRUCTION OF SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS. , 1961, Proceedings of the National Academy of Sciences of the United States of America.
[22] M. Ignatova. On the continuity of solutions to advection-diffusion equations with slightly super-critical divergence-free drifts , 2014 .
[23] J. Moser. A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .
[24] H. K. Moffatt. Magnetostrophic Turbulence and the Geodynamo , 2008 .
[25] Wendong Wang,et al. A P ] 3 J un 2 01 9 C α regularity of weak solutions of non-homogenous ultraparabolic equations with drift terms , 2019 .
[26] Harold Dean Victory. On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems☆ , 1991 .
[27] N. Krylov,et al. A CERTAIN PROPERTY OF SOLUTIONS OF PARABOLIC EQUATIONS WITH MEASURABLE COEFFICIENTS , 1981 .
[28] J. Bony. Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés , 1969 .
[29] S. Polidoro,et al. A survey on the classical theory for Kolmogorov equation , 2019, 1907.05155.
[30] L. Silvestre,et al. An Introduction to Fully Nonlinear Parabolic Equations , 2013 .
[31] S. Polidoro,et al. A geometric statement of the Harnack inequality for a degenerate Kolmogorov equation with rough coefficients , 2018, Communications in Contemporary Mathematics.
[32] Nikolai Nadirashvili,et al. Liouville theorems for the Navier–Stokes equations and applications , 2007, 0709.3599.
[33] Tsuyoshi Murata,et al. {m , 1934, ACML.
[34] Wendong Wang,et al. The Cα regularity of a class of non-homogeneous ultraparabolic equations , 2007, 0711.3411.