A note on the weak regularity theory for degenerate Kolmogorov equations

The aim of this work is to prove a Harnack inequality and the Hölder continuity for weak solutions to the Kolmogorov equation L u = f with measurable coefficients, integrable lower order terms and nonzero source term. We introduce a function space W, suitable for the study of weak solutions to L u = f , that allows us to prove a weak Poincaré inequality. More precisely, our goal is to prove a weak Harnack inequality for non-negative super-solutions by considering their Log-transform and following S. N. Krŭzkov (1963). Then this functional inequality is combined with a classical covering argument (Ink-Spots Theorem) that we extend for the first time to the case of ultraparabolic equations.

[1]  C. Mouhot,et al.  Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation , 2016, ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE.

[2]  D. Duffy Second‐Order Parabolic Differential Equations , 2013 .

[3]  N. Trudinger Pointwise estimates and quasilinear parabolic equations , 1968 .

[4]  Cl'ement Mouhot,et al.  Quantitative de Giorgi Methods in Kinetic Theory , 2021 .

[5]  L. Silvestre,et al.  On divergence-free drifts , 2010, 1010.6025.

[6]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[7]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[8]  Harnack inequalities for functions in De Giorgi parabolic class , 1988 .

[9]  J. Moser A Harnack inequality for parabolic di2erential equations , 1964 .

[10]  S. Polidoro,et al.  On a class of hypoelliptic evolution operators , 1994 .

[11]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[12]  A. Pascucci,et al.  Pointwise estimates for a class of non-homogeneous Kolmogorov equations , 2008 .

[13]  Cyril Imbert,et al.  LOG-TRANSFORM AND THE WEAK HARNACK INEQUALITY FOR KINETIC FOKKER-PLANCK EQUATIONS , 2021, Journal of the Institute of Mathematics of Jussieu.

[14]  N. Trudinger,et al.  Harnack inequalities for quasi-minima of variational integrals , 1984 .

[15]  L. Silvestre,et al.  The weak Harnack inequality for the Boltzmann equation without cut-off , 2016, Journal of the European Mathematical Society.

[16]  A. Pascucci,et al.  THE MOSER'S ITERATIVE METHOD FOR A CLASS OF ULTRAPARABOLIC EQUATIONS , 2004 .

[17]  K. Nystrom,et al.  The Dirichlet problem for Kolmogorov-Fokker-Planck type equations with rough coefficients , 2020, 2012.11410.

[18]  S. Armstrong,et al.  Variational methods for the kinetic Fokker-Planck equation , 2019, 1902.04037.

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  S. Polidoro,et al.  Moser’s estimates for degenerate Kolmogorov equations with non-negative divergence lower order coefficients , 2019, Nonlinear Analysis.

[21]  J. Moser,et al.  A NEW TECHNIQUE FOR THE CONSTRUCTION OF SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[22]  M. Ignatova On the continuity of solutions to advection-diffusion equations with slightly super-critical divergence-free drifts , 2014 .

[23]  J. Moser A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .

[24]  H. K. Moffatt Magnetostrophic Turbulence and the Geodynamo , 2008 .

[25]  Wendong Wang,et al.  A P ] 3 J un 2 01 9 C α regularity of weak solutions of non-homogenous ultraparabolic equations with drift terms , 2019 .

[26]  Harold Dean Victory On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems☆ , 1991 .

[27]  N. Krylov,et al.  A CERTAIN PROPERTY OF SOLUTIONS OF PARABOLIC EQUATIONS WITH MEASURABLE COEFFICIENTS , 1981 .

[28]  J. Bony Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés , 1969 .

[29]  S. Polidoro,et al.  A survey on the classical theory for Kolmogorov equation , 2019, 1907.05155.

[30]  L. Silvestre,et al.  An Introduction to Fully Nonlinear Parabolic Equations , 2013 .

[31]  S. Polidoro,et al.  A geometric statement of the Harnack inequality for a degenerate Kolmogorov equation with rough coefficients , 2018, Communications in Contemporary Mathematics.

[32]  Nikolai Nadirashvili,et al.  Liouville theorems for the Navier–Stokes equations and applications , 2007, 0709.3599.

[33]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[34]  Wendong Wang,et al.  The Cα regularity of a class of non-homogeneous ultraparabolic equations , 2007, 0711.3411.