Methods and applications of RNA contact prediction

[1]  Yi Xiao,et al.  Using 3dRNA for RNA 3‐D Structure Prediction and Evaluation , 2017, Current protocols in bioinformatics.

[2]  Gunnar Jeschke,et al.  EPR-aided approach for solution structure determination of large RNAs or protein–RNA complexes , 2014, Nature Communications.

[3]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[4]  D. Higgins,et al.  See Blockindiscussions, Blockinstats, Blockinand Blockinauthor Blockinprofiles Blockinfor Blockinthis Blockinpublication Clustal: Blockina Blockinpackage Blockinfor Blockinperforming Multiple Blockinsequence Blockinalignment Blockinon Blockina Minicomputer Article Blockin Blockinin Blockin , 2022 .

[5]  T. Thum,et al.  RNA-based diagnostic and therapeutic strategies for cardiovascular disease , 2019, Nature Reviews Cardiology.

[6]  Byungkyu Brian Park,et al.  PRIdictor: Protein-RNA Interaction predictor , 2016, Biosyst..

[7]  Sean R. Eddy,et al.  Rfam: an RNA family database , 2003, Nucleic Acids Res..

[8]  Feng Ding,et al.  iFoldRNA: three-dimensional RNA structure prediction and folding , 2008, Bioinform..

[9]  S. L. Le Grice,et al.  Recent Advances in Targeting the HIV-1 Tat/TAR Complex. , 2017, Current pharmaceutical design.

[10]  Chen Zeng,et al.  Network Analysis Reveals the Recognition Mechanism for Dimer Formation of Bulb-type Lectins , 2017, Scientific Reports.

[11]  Nikolay V. Dokholyan,et al.  iFoldRNA v2: folding RNA with constraints , 2015, Bioinform..

[12]  F. Kashanchi,et al.  Design of Tat-Activated Cdk9 Inhibitor , 2018, International Journal of Peptide Research and Therapeutics.

[13]  Eric Westhof,et al.  Sequence to Structure (S2S): display, manipulate and interconnect RNA data from sequence to structure , 2005, Bioinform..

[14]  Yunjie Zhao,et al.  Computational study of switching mechanism in add A-riboswitch , 2020 .

[15]  Yi Xiao,et al.  RNA Stability Under Different Combinations of Amber Force Fields and Solvation Models , 2010, Journal of biomolecular structure & dynamics.

[16]  J. Karn,et al.  The HIV Tat-TAR interaction, a novel target for drug discovery , 1998 .

[17]  D. Baker,et al.  Atomic accuracy in predicting and designing non-canonical RNA structure , 2010, Nature Methods.

[18]  J. Maizel,et al.  RNA2D3D: A program for Generating, Viewing, and Comparing 3-Dimensional Models of RNA , 2008, Journal of biomolecular structure & dynamics.

[19]  C. Dominguez,et al.  HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. , 2003, Journal of the American Chemical Society.

[20]  J. Abrahams,et al.  Recycling of aborted ribosomal 50S subunit-nascent chain-tRNA complexes by the heat shock protein Hsp15. , 2009, Journal of molecular biology.

[21]  Ya Jia,et al.  HKPocket: human kinase pocket database for drug design , 2019, BMC Bioinformatics.

[22]  J. Doudna,et al.  Solving large RNA structures by X-ray crystallography. , 2000, Methods in enzymology.

[23]  Toshiro K. Ohsumi,et al.  Genome-wide identification of polycomb-associated RNAs by RIP-seq. , 2010, Molecular cell.

[24]  D. Higgins,et al.  T-Coffee: A novel method for fast and accurate multiple sequence alignment. , 2000, Journal of molecular biology.

[25]  K. Katoh,et al.  MAFFT version 5: improvement in accuracy of multiple sequence alignment , 2005, Nucleic acids research.

[26]  Steven Busan,et al.  RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP) , 2014, Nature Methods.

[27]  Chen Zeng,et al.  DIRECT: RNA contact predictions by integrating structural patterns , 2019, BMC Bioinformatics.

[28]  P. Zeng,et al.  Rsite2: an efficient computational method to predict the functional sites of noncoding RNAs , 2016, Scientific Reports.

[29]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[30]  Jianwei Li,et al.  Rsite: a computational method to identify the functional sites of noncoding RNAs , 2015, Scientific reports.

[31]  T. Hwa,et al.  Identification of direct residue contacts in protein–protein interaction by message passing , 2009, Proceedings of the National Academy of Sciences.

[32]  Sheng-You Huang,et al.  RRDB: a comprehensive and non‐redundant benchmark for RNA‐RNA docking and scoring , 2018, Bioinform..

[33]  Pei Zhou,et al.  HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy , 2017, Nucleic Acids Res..

[34]  A. Pardi,et al.  NMR Methods for Studying the Structure and Dynamics of RNA , 2005, Chembiochem : a European journal of chemical biology.

[35]  Zixiang Wang,et al.  A boosting approach for prediction of protein-RNA binding residues , 2017, BMC Bioinformatics.

[36]  Jie Zhou,et al.  E88, a new cyclic-di-GMP class I riboswitch aptamer from Clostridium tetani, has a similar fold to the prototypical class I riboswitch, Vc2, but differentially binds to c-di-GMP analogs. , 2014, Molecular bioSystems.

[37]  R. Brimacombe,et al.  Getting closer to an understanding of the three-dimensional structure of ribosomal RNA. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[38]  Timo Lassmann,et al.  Kalign 3: multiple sequence alignment of large datasets , 2019, Bioinform..

[39]  Jian Wang,et al.  3dRNAscore: a distance and torsion angle dependent evaluation function of 3D RNA structures , 2015, Nucleic acids research.

[40]  A. Swaroop,et al.  RNA Biology in Retinal Development and Disease. , 2018, Trends in genetics : TIG.

[41]  Gunnar Jeschke,et al.  Combining NMR and EPR to Determine Structures of Large RNAs and Protein-RNA Complexes in Solution. , 2015, Methods in enzymology.

[42]  J. Feigon,et al.  Structural determinants for ligand capture by a class II preQ1 riboswitch , 2014, Proceedings of the National Academy of Sciences.

[43]  Yi Xiao,et al.  3dRNA v2.0: An Updated Web Server for RNA 3D Structure Prediction , 2019, International journal of molecular sciences.

[44]  V. Moulton,et al.  Predicting RNA Structure Using Mutual Information , 2005, Applied bioinformatics.

[45]  Jacek Blazewicz,et al.  Automated RNA 3D Structure Prediction with RNAComposer. , 2016, Methods in molecular biology.

[46]  Byong-Seok Choi,et al.  Rapid preparation of RNA samples for NMR spectroscopy and X-ray crystallography. , 2004, Nucleic acids research.

[47]  Gregory B. Gloor,et al.  Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction , 2008, Bioinform..

[48]  Geoffrey E. Hinton A Practical Guide to Training Restricted Boltzmann Machines , 2012, Neural Networks: Tricks of the Trade.

[49]  D. Baker,et al.  Automated de novo prediction of native-like RNA tertiary structures , 2007, Proceedings of the National Academy of Sciences.

[50]  Mengchen Liu,et al.  Improving the prediction of protein‐nucleic acids binding residues via multiple sequence profiles and the consensus of complementary methods , 2018, Bioinform..

[51]  Chen Zeng,et al.  RBind: computational network method to predict RNA binding sites , 2018, Bioinform..

[52]  J. Bujnicki,et al.  SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction , 2015, Nucleic acids research.

[53]  Jian Wang,et al.  Optimization of RNA 3D structure prediction using evolutionary restraints of nucleotide–nucleotide interactions from direct coupling analysis , 2017, Nucleic acids research.

[54]  Sika Zheng,et al.  High-Throughput Screening Method to Identify Alternative Splicing Regulators. , 2018, Methods in molecular biology.

[55]  Song Cao,et al.  Predicting RNA folding thermodynamics with a reduced chain representation model. , 2005, RNA.

[56]  C Massire,et al.  MANIP: an interactive tool for modelling RNA. , 1998, Journal of molecular graphics & modelling.

[57]  Shengyou Huang,et al.  Determination of an effective scoring function for RNA–RNA interactions with a physics-based double-iterative method , 2018, Nucleic acids research.

[58]  Robert C. Edgar,et al.  Multiple sequence alignment. , 2006, Current opinion in structural biology.

[59]  P. Romby,et al.  An overview of RNAs with regulatory functions in gram-positive bacteria , 2009, Cellular and Molecular Life Sciences.

[60]  Janusz M Bujnicki,et al.  Bioinformatics Tools and Benchmarks for Computational Docking and 3D Structure Prediction of RNA-Protein Complexes , 2018, Genes.

[61]  Yangyu Huang,et al.  Automated and fast building of three-dimensional RNA structures , 2012, Scientific Reports.

[62]  A. Sali,et al.  Insights into HIV-1 proviral transcription from integrative structure and dynamics of the Tat:AFF4:P-TEFb:TAR complex , 2016, eLife.

[63]  Russ B Altman,et al.  Turning limited experimental information into 3D models of RNA. , 2010, RNA.

[64]  Ya Jia,et al.  Novel method to identify group-specific non-catalytic pockets of human kinome for drug design , 2020, RSC advances.

[65]  Yi Xiao,et al.  Evaluation of RNA secondary structure prediction for both base-pairing and topology , 2018, Biophysics Reports.

[66]  P. Dersch,et al.  RNA-based mechanisms of virulence control in Enterobacteriaceae , 2017, RNA biology.

[67]  C. Sander,et al.  Direct-coupling analysis of residue coevolution captures native contacts across many protein families , 2011, Proceedings of the National Academy of Sciences.

[68]  A. Bonvin,et al.  The HADDOCK web server for data-driven biomolecular docking , 2010, Nature Protocols.

[69]  Magdalena A. Jonikas,et al.  Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. , 2009, RNA.

[70]  Jiahua He,et al.  Protein-ensemble-RNA docking by efficient consideration of protein flexibility through homology models , 2019, Bioinform..

[71]  Adam J. Riesselman,et al.  3D RNA and Functional Interactions from Evolutionary Couplings , 2015, Cell.

[72]  J. Bujnicki,et al.  ModeRNA: a tool for comparative modeling of RNA 3D structure , 2011, Nucleic acids research.

[73]  Yunjie Zhao,et al.  Improvements of the Hierarchical Approach for Predicting RNA Tertiary Structure , 2011, Journal of biomolecular structure & dynamics.

[74]  Rodrigo Lopez,et al.  Multiple sequence alignment with the Clustal series of programs , 2003, Nucleic Acids Res..

[75]  M. Harris,et al.  RNA crosslinking methods. , 2009, Methods in enzymology.

[76]  F. Major,et al.  The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data , 2008, Nature.

[77]  Yi Xiao,et al.  Molecular dynamics simulation of the binding process of ligands to the add adenine riboswitch aptamer. , 2019, Physical review. E.

[78]  Yi Xiao,et al.  HNADOCK: a nucleic acid docking server for modeling RNA/DNA–RNA/DNA 3D complex structures , 2019, Nucleic Acids Res..

[79]  Yangyu Huang,et al.  3dRPC: a web server for 3D RNA-protein structure prediction , 2018, Bioinform..

[80]  Eric Westhof,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[81]  G. Stormo,et al.  Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. , 1992, Nucleic acids research.

[82]  T. Nilsen RNase footprinting to map sites of RNA-protein interactions. , 2014, Cold Spring Harbor protocols.