Edge Detection Based on Fast Adaptive Mean Shift Algorithm

Edge detection is arguably the most important operation in low level computer vision. Mean shift is an effective iterative algorithm widely used in edge detection. But the cost of computation prohibits Mean shift algorithm for high dimensions feature space. In this paper, a fast adaptive mean shift algorithm is proposed for edge detection. It makes use of one approximate nearest neighbors search method, i.e. LSH (Locality-Sensitive Hashing) firstly, which dramatically reduces the computation of iterations in high dimensions. Moreover, the LSH procedure can help to determine the bandwidth of the kernel window adaptively. The experimental results show the effectiveness of the proposed approach.

[1]  Dorin Comaniciu,et al.  An Algorithm for Data-Driven Bandwidth Selection , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[3]  Gary Bradski,et al.  Computer Vision Face Tracking For Use in a Perceptual User Interface , 1998 .

[4]  Shimon Ullman,et al.  Structural Saliency: The Detection Of Globally Salient Structures using A Locally Connected Network , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[5]  Michael Lindenbaum,et al.  A Probabilistic Interpretation of the Saliency Network , 2000, ECCV.

[6]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Bo Thiesson,et al.  Image and Video Segmentation by Anisotropic Kernel Mean Shift , 2004, ECCV.

[9]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[11]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[12]  E. Peli Feature detection algorithm based on a visual system model , 2002, Proc. IEEE.

[13]  Hai Tao,et al.  Object Tracking with Bayesian Estimation of Dynamic Layer Representations , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Robert T. Collins,et al.  Mean-shift blob tracking through scale space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[15]  Gérard G. Medioni,et al.  Inferring global perceptual contours from local features , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Svetha Venkatesh,et al.  Dynamic Threshold Determination by Local and Global Edge Evaluation , 1995, CVGIP Graph. Model. Image Process..

[17]  Dorin Comaniciu,et al.  Mean shift analysis and applications , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[18]  Piotr Indyk,et al.  Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.