Exponentially fitted two-step hybrid methods for y″=f(x, y)

It is the purpose of this paper to derive two-step hybrid methods for y^''=f(x,y), with oscillatory or periodic solutions, specially tuned to the behaviour of the solution, through the usage of the exponential fitting technique. The construction of two-step exponentially fitted hybrid methods is shown and their properties are discussed. Some numerical experiments confirming the theoretical expectations are provided.

[1]  Beatrice Paternoster,et al.  Two Step Runge-Kutta-Nyström Methods for y'' = f(x, y) and P-Stability , 2002, International Conference on Computational Science.

[2]  A. Prothero,et al.  On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations , 1974 .

[3]  J. M. Franco Exponentially fitted explicit Runge-Kutta-Nyström methods , 2004 .

[4]  Xinyuan Wu,et al.  Trigonometrically fitted explicit Numerov-type method for periodic IVPs with two frequencies , 2008, Comput. Phys. Commun..

[5]  Beatrice Paternoster,et al.  Trigonometrically fitted two-step hybrid methods for special second order ordinary differential equations , 2011, Math. Comput. Simul..

[6]  D. Hollevoet,et al.  The optimal exponentially-fitted Numerov method for solving two-point boundary value problems , 2009 .

[7]  Liviu Gr. Ixaru,et al.  P-stability and exponential-fitting methods for y″″ = f(x, y) , 1996 .

[8]  M. Rizea,et al.  A numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies , 1980 .

[9]  Nguyen Huu Cong,et al.  Stability of collocation-based Runge-Kutta-Nyström methods , 1991 .

[10]  A. C. Allison,et al.  Exponential-fitting methods for the numerical solution of the schrodinger equation , 1978 .

[11]  Zacharias A. Anastassi,et al.  A Family of Exponentially-fitted Runge–Kutta Methods with Exponential Order Up to Three for the Numerical Solution of the Schrödinger Equation , 2007 .

[12]  Beatrice Paternoster,et al.  Runge‐Kutta‐Nyström Stability for a Class of General Linear Methods for y″ = f(x,y) , 2009 .

[13]  W. Gautschi Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .

[14]  D. G. Bettis,et al.  Stabilization of Cowell's method , 1969 .

[15]  G. Vanden Berghe,et al.  Exponentially-fitted Numerov methods , 2007 .

[16]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[17]  John P. Coleman,et al.  Order conditions for a class of two‐step methods for y″ = f (x, y) , 2003 .

[18]  H. De Meyer,et al.  Exponentially fitted Runge-Kutta methods , 2000 .

[19]  L.Gr. Ixaru,et al.  Operations on oscillatory functions , 1997 .

[20]  Beatrice Paternoster,et al.  Runge-Kutta(-Nystro¨m) methods for ODEs with periodic solutions based on trigonometric polynomials , 1998 .

[21]  Tom Lyche,et al.  Chebyshevian multistep methods for ordinary differential equations , 1972 .

[22]  Hans Van de Vyver Phase-fitted and amplification-fitted two-step hybrid methods for y˝= f ( x,y ) , 2007 .

[23]  T. E. Simos,et al.  An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .

[24]  Beatrice Paternoster,et al.  Two-step hybrid collocation methods for y"=f(x, y) , 2009, Appl. Math. Lett..

[25]  Linda R. Petzold,et al.  Numerical solution of highly oscillatory ordinary differential equations , 1997, Acta Numerica.

[26]  H. De Meyer,et al.  Frequency evaluation in exponential fitting multistep algorithms for ODEs , 2002 .

[27]  John C. Butcher,et al.  General linear methods for ordinary differential equations , 2009, Math. Comput. Simul..

[28]  Ben P. Sommeijer,et al.  Diagonally implicit Runge-Kutta-Nystrm methods for oscillatory problems , 1989 .

[29]  H. De Meyer,et al.  Exponentially-fitted explicit Runge–Kutta methods , 1999 .

[30]  Manuel Calvo,et al.  Sixth-order symmetric and symplectic exponentially fitted modified Runge-Kutta methods of Gauss type , 2008, Comput. Phys. Commun..

[31]  John P. Coleman,et al.  Mixed collocation methods for y ′′ =f x,y , 2000 .