A stepwise dechlorination/cross-coupling strategy to diversify the vancomycin 'in-chloride'.

[1]  Scott J. Miller,et al.  Structure diversification of vancomycin through peptide-catalyzed, site-selective lipidation: a catalysis-based approach to combat glycopeptide-resistant pathogens. , 2015, Journal of medicinal chemistry.

[2]  Scott J. Miller,et al.  X-ray Crystal Structure of Teicoplanin A2-2 Bound to a Catalytic Peptide Sequence via the Carrier Protein Strategy , 2014, The Journal of organic chemistry.

[3]  G. Lloyd‐Jones,et al.  Selection of boron reagents for Suzuki-Miyaura coupling. , 2014, Chemical Society reviews.

[4]  D. Boger,et al.  Investigation into the functional impact of the vancomycin C-ring aryl chloride. , 2013, Bioorganic & medicinal chemistry letters.

[5]  Scott J. Miller,et al.  Asymmetric catalysis at a distance: catalytic, site-selective phosphorylation of teicoplanin. , 2013, Journal of the American Chemical Society.

[6]  Scott J. Miller,et al.  Chemical tailoring of teicoplanin with site-selective reactions. , 2013, Journal of the American Chemical Society.

[7]  D. Boger,et al.  Probing the role of the vancomycin e-ring aryl chloride: selective divergent synthesis and evaluation of alternatively substituted E-ring analogues. , 2013, Journal of medicinal chemistry.

[8]  A. Mark,et al.  Vancomycin: ligand recognition, dimerization and super‐complex formation , 2013, The FEBS journal.

[9]  K. Hamazaki,et al.  Prostaglandins, Leukotrienes and Essential Fatty Acids , 2013 .

[10]  Scott J. Miller,et al.  Catalytic site-selective thiocarbonylations and deoxygenations of vancomycin reveal hydroxyl-dependent conformational effects. , 2012, Journal of the American Chemical Society.

[11]  D. Boger,et al.  Redesign of glycopeptide antibiotics: back to the future. , 2012, ACS chemical biology.

[12]  Scott J. Miller,et al.  Site-selective bromination of vancomycin. , 2012, Journal of the American Chemical Society.

[13]  D. Boger,et al.  Total synthesis of [Ψ[C(═S)NH]Tpg4]vancomycin aglycon, [Ψ[C(═NH)NH]Tpg4]vancomycin aglycon, and related key compounds: reengineering vancomycin for dual D-Ala-D-Ala and D-Ala-D-Lac binding. , 2012, Journal of the American Chemical Society.

[14]  J. Karlowsky,et al.  New Lipoglycopeptides , 2010, Drugs.

[15]  D. Boger,et al.  A redesigned vancomycin engineered for dual D-Ala-D-ala And D-Ala-D-Lac binding exhibits potent antimicrobial activity against vancomycin-resistant bacteria. , 2011, Journal of the American Chemical Society.

[16]  K. Miura,et al.  Discovery of a novel series of semisynthetic vancomycin derivatives effective against vancomycin-resistant bacteria. , 2010, Journal of medicinal chemistry.

[17]  Paul D. R. Johnson,et al.  Reduced Vancomycin Susceptibility in Staphylococcus aureus, Including Vancomycin-Intermediate and Heterogeneous Vancomycin-Intermediate Strains: Resistance Mechanisms, Laboratory Detection, and Clinical Implications , 2010, Clinical Microbiology Reviews.

[18]  D. Boger,et al.  Synthesis and evaluation of vancomycin aglycon analogues that bear modifications in the N-terminal D-leucyl amino acid. , 2009, Journal of medicinal chemistry.

[19]  B. de Kruijff,et al.  Lipid II: a central component in bacterial cell wall synthesis and a target for antibiotics. , 2008, Prostaglandins, leukotrienes, and essential fatty acids.

[20]  G. Patti,et al.  Vancomycin derivative with damaged D-Ala-D-Ala binding cleft binds to cross-linked peptidoglycan in the cell wall of Staphylococcus aureus. , 2008, Biochemistry.

[21]  E. Breukink,et al.  Lipid II as a target for antibiotics , 2006, Nature Reviews Drug Discovery.

[22]  D. Boger,et al.  Total synthesis and evaluation of [Psi[CH2NH]Tpg4]vancomycin aglycon: reengineering vancomycin for dual D-Ala-D-Ala and D-Ala-D-Lac binding. , 2006, Journal of the American Chemical Society.

[23]  S. Buchwald,et al.  General catalysts for the Suzuki-Miyaura and Sonogashira coupling reactions of aryl chlorides and for the coupling of challenging substrate combinations in water. , 2005, Angewandte Chemie.

[24]  C. Walsh,et al.  Glycopeptide and lipoglycopeptide antibiotics. , 2005, Chemical reviews.

[25]  Dale L Boger,et al.  Partitioning the loss in vancomycin binding affinity for D-Ala-D-Lac into lost H-bond and repulsive lone pair contributions. , 2003, Journal of the American Chemical Society.

[26]  A. Heck,et al.  Getting closer to the real bacterial cell wall target: biomolecular interactions of water-soluble lipid II with glycopeptide antibiotics. , 2003, Chemistry.

[27]  G. C. Fu,et al.  Palladium-catalyzed coupling reactions of aryl chlorides. , 2002, Angewandte Chemie.

[28]  R. Hughes,et al.  Synthesis and biological evaluation of vancomycin dimers with potent activity against vancomycin-resistant bacteria: target-accelerated combinatorial synthesis. , 2001, Chemistry.

[29]  R. Hughes,et al.  Solid- and solution-phase synthesis of vancomycin and vancomycin analogues with activity against vancomycin-resistant bacteria. , 2001, Chemistry.

[30]  D. Boger Vancomycin, teicoplanin, and ramoplanin: Synthetic and mechanistic studies † , 2001, Medicinal research reviews.

[31]  Robert Hughes,et al.  Target-Accelerated Combinatorial Synthesis and Discovery of Highly Potent Antibiotics Effective Against Vancomycin-Resistant Bacteria. , 2000, Angewandte Chemie.

[32]  D. Boger,et al.  Total Synthesis of the Vancomycin Aglycon , 1999 .

[33]  R. Hughes,et al.  TOTAL SYNTHESIS OF VANCOMYCIN. PART 3 : SYNTHESIS OF THE AGLYCON , 1999 .

[34]  Stefan Bräse,et al.  Total Synthesis of Vancomycin—Part 2: Retrosynthetic Analysis, Synthesis of Amino Acid Building Blocks and Strategy Evaluations , 1999 .

[35]  K. Nicolaou,et al.  Total Synthesis of Vancomycin—Part 1: Design and Development of Methodology , 1999 .

[36]  R. Hughes,et al.  Total Synthesis of Vancomycin—Part 4: Attachment of the Sugar Moieties and Completion of the Synthesis , 1999 .

[37]  K. Nicolaou,et al.  Chemistry, Biology, and Medicine of the Glycopeptide Antibiotics. , 1999, Angewandte Chemie.

[38]  Dudley H. Williams,et al.  The Vancomycin Group of Antibiotics and the Fight against Resistant Bacteria. , 1999, Angewandte Chemie.

[39]  D. Kahne,et al.  Synthesis of Vancomycin from the Aglycon , 1999 .

[40]  R. Hughes,et al.  Total Synthesis of Vancomycin , 1999 .

[41]  J. Barrow,et al.  Total Syntheses of Vancomycin and Eremomycin Aglycons. , 1998, Angewandte Chemie.

[42]  K. Nicolaou,et al.  Total Synthesis of Vancomycin Aglycon-Part 3: Final Stages. , 1998, Angewandte Chemie.

[43]  N. Woodford Glycopeptide-resistant enterococci: a decade of experience. , 1998, Journal of medical microbiology.

[44]  M. Preobrazhenskaya,et al.  A new type of chemical modification of glycopeptides antibiotics: aminomethylated derivatives of eremomycin and their antibacterial activity. , 1997, The Journal of antibiotics.

[45]  Paul H. Axelsen,et al.  Simultaneous Recognition of a Carboxylate-Containing Ligand and an Intramolecular Surrogate Ligand in the Crystal Structure of an Asymmetric Vancomycin Dimer , 1997 .

[46]  T. F. Butler,et al.  Reductive alkylation of glycopeptide antibiotics: synthesis and antibacterial activity. , 1996, The Journal of antibiotics.

[47]  C. Walsh,et al.  Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. , 1996, Chemistry & biology.

[48]  Norio Miyaura,et al.  Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds , 1995 .

[49]  R. Nagarajan Structure-activity relationships of vancomycin-type glycopeptide antibiotics. , 1993, The Journal of antibiotics.

[50]  C. Walsh,et al.  Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. , 1991, Biochemistry.

[51]  P. M. Booth,et al.  The Edman degradation of vancomycin: preparation of vancomycin hexapeptide , 1987 .

[52]  C. Harris,et al.  The role of the chlorine substituents in the antibiotic vancomycin: preparation and characterization of mono- and didechlorovancomycin , 1985 .

[53]  H. Perkins,et al.  Modifications of the acyl-D-alanyl-D-alanine terminus affecting complex-formation with vancomycin. , 1971, The Biochemical journal.