Smart Fluid Systems: The Advent of Autonomous Liquid Robotics

Organic, inorganic or hybrid devices in the liquid state, kept in a fixed volume by surface tension or by a confining membrane that protects them from a harsh environment, could be used as biologically inspired autonomous robotic systems with unique capabilities. They could change shape according to a specific exogenous command or by means of a fully integrated adaptive system, and provide an innovative solution for many future applications, such as space exploration in extreme or otherwise challenging environments, post‐disaster search and rescue in ground applications, compliant wearable devices, and even in the medical field for in vivo applications. This perspective provides an initial assessment of existing capabilities that could be leveraged to pursue the topic of “Smart Fluid Systems” or “Liquid Engineered Systems”.

[1]  J. C. Ruiz-Suárez,et al.  AC magnetic susceptibility at medium frequencies suggests a paramagnetic behavior of pure water , 2012 .

[2]  Alessandro Chiolerio,et al.  Zinc Oxide Thin Films for Memristive Devices: A Review , 2017 .

[3]  C. Karcher,et al.  Stability of liquid metal drops affected by a high-frequency magnetic field. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Weijia Wen,et al.  Electrorheological fluids: structures and mechanisms. , 2008, Soft matter.

[5]  K. C. Kao,et al.  High-field electrical conduction in polyimide films , 1999 .

[6]  E. Blums Mass transfer in nonisothermal ferrocolloids under the effect of a magnetic field , 1999 .

[7]  J. Popp Theoretical and Experimental Investigations of Ferrofluids Focusing on Locomotion Systems , 2014 .

[8]  Yanmin Wang,et al.  Heat transfer enhancement by magnetic nanofluids—A review , 2013 .

[9]  S. Majetich,et al.  Magnetic nanoparticles , 2013, Handbook of Magnetism and Magnetic Materials.

[10]  K. Raj,et al.  Advances in ferrofluid technology , 1995 .

[11]  Abdul-Ghani Olabi,et al.  Design and application of magneto-rheological fluid , 2007 .

[12]  L. Chua Memristor-The missing circuit element , 1971 .

[13]  M. Zahn,et al.  Effects of spin viscosity on ferrofluid flow profiles in alternating and rotating magnetic fields , 2002 .

[14]  Fabien Alibart,et al.  Plasticity in memristive devices for spiking neural networks , 2015, Front. Neurosci..

[15]  J. Philip,et al.  Optical Properties and Applications of Ferrofluids—A Review , 2012 .

[16]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[17]  S. Genç,et al.  Synthesis and rheology of ferrofluids: a review , 2014 .

[18]  N. Savage Electrochemistry: Liquid assets , 2015, Nature.

[19]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[20]  S. Gadžurić,et al.  Density, electrical conductivity, viscosity and excess properties of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide + propylene carbonate binary mixtures , 2014 .

[21]  W. Jensen The Origin of the Name “Onion’s Fusible Alloy” , 2010 .

[22]  Jean-Baptiste Caussin,et al.  Emergence of macroscopic directed motion in populations of motile colloids , 2013, Nature.

[23]  Marco Crepaldi,et al.  A microbial fuel cell powering an all-digital piezoresistive wireless sensor system , 2014 .

[24]  Hyung-Jun Koo,et al.  Towards All‐Soft Matter Circuits: Prototypes of Quasi‐Liquid Devices with Memristor Characteristics , 2011, Advanced materials.

[25]  Jean-Philippe Déry,et al.  Ethylene Glycol Based Ferrofluid for the Fabrication of Magnetically Deformable Liquid Mirrors , 2008 .

[26]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[27]  Temistocle Calzecchi-Onesti Sulla conduttività elettrica delle limature metalliche , 1884 .

[28]  E. Hassel,et al.  THERMOPHYSICAL PROPERTIES OF 1-BUTYL-3-METHYLIMIDAZOLIUM BIS(TRIFLUOROMETHYLSULFONYL)IMIDE AT HIGH TEMPERATURES AND PRESSURES , 2015 .

[29]  M. Lajvardi,et al.  Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect , 2010 .

[30]  Jan van den Hurk,et al.  Nanobatteries in redox-based resistive switches require extension of memristor theory , 2013, Nature Communications.

[31]  Hyo-Jick Choi,et al.  Artificial organelle: ATP synthesis from cellular mimetic polymersomes. , 2005, Nano letters.

[32]  James A. Cutts,et al.  Guidance, Navigation, and Control Technology Assessment for Future Planetary Science Missions , 2015 .

[33]  S. Odenbach Ferrofluids—magnetically controlled suspensions , 2003 .

[34]  Xuemei Zhang,et al.  Broadband plasmon photocurrent generation from Au nanoparticles/ mesoporous TiO2 nanotube electrodes , 2015 .

[35]  Sascha Vongehr,et al.  The Missing Memristor has Not been Found , 2015, Scientific Reports.

[36]  Bharat Bhushan,et al.  Handbook of Nanomaterials Properties , 2014 .

[37]  Photonic hall effect in ferrofluids: theory and experiments , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  Limu Wang,et al.  Logic control of microfluidics with smart colloid. , 2010, Lab on a chip.

[39]  J. Bacri,et al.  Phase diagram of an ionic magnetic colloid: Experimental study of the effect of ionic strength , 1989 .

[40]  B. M. Fulk MATH , 1992 .

[41]  Andreas Engel,et al.  Thermal ratchet effects in ferrofluids. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Barbara Mazzolai,et al.  Robotics: Generation soft , 2016, Nature.

[43]  Alessandro Chiolerio,et al.  Wearable Electronics and Smart Textiles: A Critical Review , 2014, Sensors.

[44]  Robert J. Wood,et al.  An integrated design and fabrication strategy for entirely soft, autonomous robots , 2016, Nature.

[45]  P. Král,et al.  Magnetic field-induced self-assembly of iron oxide nanocubes. , 2015, Faraday discussions.

[46]  Sharon C Glotzer,et al.  Digital colloids: reconfigurable clusters as high information density elements , 2014 .

[47]  Huichan Zhao,et al.  Flexible and stretchable sensors for fluidic elastomer actuated soft robots , 2017 .

[48]  A. Engel,et al.  Ferrofluids as thermal ratchets. , 2002, Physical review letters.

[49]  Bhanu Pratap Singh,et al.  Conducting ferrofluid: a high-performance microwave shielding material , 2014 .

[50]  J.A. Boatz,et al.  Design of Energetic Ionic Liquids , 2009, 2009 DoD High Performance Computing Modernization Program Users Group Conference.

[51]  Thomas A. Moore,et al.  Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane , 1998, Nature.

[52]  Jing Liu,et al.  Self‐Fueled Biomimetic Liquid Metal Mollusk , 2015, Advanced materials.

[53]  Leopold Scheflan,et al.  The handbook of solvents , 1973 .

[54]  C. Scherer,et al.  Ferrofluids: properties and applications , 2005 .

[55]  Shengjiang Chang,et al.  Tunable optical and magneto-optical properties of ferrofluid in the terahertz regime. , 2014, Optics express.

[56]  John Philip,et al.  Magnetic field dependant backscattering of light in water based ferrofluid containing polymer covered Fe3O4 nanoparticles , 2013 .

[57]  H. Eyring,et al.  Elementary transition state theory of the Soret and Dufour effects. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[58]  L. Kavan,et al.  Graphene-based cathodes for liquid-junction dye sensitized solar cells: Electrocatalytic and mass transport effects , 2014 .

[59]  Taekeon Jung,et al.  Highly Stable Liquid Metal-Based Pressure Sensor Integrated with a Microfluidic Channel , 2015, Sensors.

[60]  Alessandro Chiolerio,et al.  Resistive hysteresis in flexible nanocomposites and colloidal suspensions: interfacial coupling mechanism unveiled , 2016 .

[61]  James E. Martin,et al.  STRUCTURE AND DYNAMICS OF ELECTRORHEOLOGICAL FLUIDS , 1998 .

[62]  Ido Bachelet,et al.  A Non-Newtonian Fluid Robot , 2016, Artificial Life.

[63]  Ryuichiro Yamane,et al.  The Shape of a Liquid Metal Jet under a Non-uniform Magnetic Field : Fluids Engineering , 1987 .

[64]  V. P. Dutta,et al.  Synthesis of ferrofluid based nanoarchitectured polypyrrole composites and its application for electromagnetic shielding , 2014 .

[65]  D. Baigl,et al.  Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives. , 2012, Lab on a chip.

[66]  L. Santos,et al.  Water with Excess Electric Charge , 2011 .

[67]  Thijs J. H. Vlugt,et al.  State-of-the-Art of CO2 Capture with Ionic Liquids , 2012 .

[68]  T. White,et al.  Photomechanical Response of Composite Structures Built from Azobenzene Liquid Crystal Polymer Networks , 2011 .

[69]  S. Glotzer Rise of the Colloidal Machines , 2015 .

[70]  J. Weis,et al.  The structure of ferrofluids: A status report , 2005 .

[71]  S. Efrima,et al.  Chemical aspects of silver metal liquid-like films , 1991 .

[72]  Sharon C Glotzer,et al.  Actuation of shape-memory colloidal fibres of Janus ellipsoids. , 2015, Nature materials.

[73]  P. C. Fannin An experimental observation of the dynamic behaviour of ferrofluids , 1994 .

[74]  Evgenii E. Narimanov,et al.  Self-assembled tunable photonic hyper-crystals , 2013, Scientific Reports.

[75]  A. Tufaile,et al.  Observing the Jumping Laser Dogs , 2016 .

[76]  G. Bisio,et al.  Magnetic systems depending on three or two variables; thermodynamic analysis and some existing and possible applications , 1999 .

[77]  Paul Hickson,et al.  Deposition of metal films on an ionic liquid as a basis for a lunar telescope , 2007, Nature.

[78]  A. Akbarzadeh,et al.  Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine , 2012, Nanoscale Research Letters.

[79]  MajidiCarmel,et al.  Soft Robotics: A Perspective—Current Trends and Prospects for the Future , 2014 .