Ego-motion estimation using optical flow fields observed from multiple cameras

In this paper, we consider a multi-camera vision system mounted on a moving object in a static three-dimensional environment. By using the motion flow fields seen by all of the cameras, an algorithm which does not need to solve the point-correspondence problem among the cameras is proposed to estimate the 3D ego-motion parameters of the moving object. Our experiments have shown that using multiple optical flow fields obtained from different cameras can be very helpful for ego-motion estimation.

[1]  Thomas S. Huang,et al.  Estimating three‐dimensional vehicle motion in an outdoor scene using stereo image sequences , 1992, Int. J. Imaging Syst. Technol..

[2]  Venkataraman Sundareswaran,et al.  Motion Parameter Estimation from Global Flow Field Data , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Rama Chellappa,et al.  Estimation of Object Motion Parameters from Noisy Images , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Nicholas Ayache,et al.  Trinocular Stereo Vision for Robotics , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Gilad Adiv,et al.  Inherent Ambiguities in Recovering 3-D Motion and Structure from a Noisy Flow Field , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Thierry Viéville,et al.  Computation of ego-motion and structure from visual and inertial sensors using the vertical cue , 1993, 1993 (4th) International Conference on Computer Vision.

[7]  James S. Duncan,et al.  3-D Translational Motion and Structure from Binocular Image Flows , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Rama Chellappa,et al.  Estimating the Kinematics and Structure of a Rigid Object from a Sequence of Monocular Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  B. Bhanu,et al.  Estimating 3D Egomotion from Perspective Image Sequence , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  K. Prazdny,et al.  Determining The Instantaneous Direction Of Motion From Optical Flow Generated By A Curvilinearly Moving Observer , 1981, Other Conferences.

[11]  Thomas S. Huang,et al.  Vehicle-Type Motion Estimation From Multi-Frame Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Paul R. Cohen,et al.  Motion and structure estimation from stereo image sequences , 1992, IEEE Trans. Robotics Autom..