The human angiotensin AT(1) receptor supports G protein-independent extracellular signal-regulated kinase 1/2 activation and cellular proliferation.

[1]  Robert J. Lefkowitz,et al.  β-Arrestin-biased Agonism at the β2-Adrenergic Receptor* , 2008, Journal of Biological Chemistry.

[2]  T. Schwartz,et al.  Characterization of G-Protein Coupled Receptor Kinase Interaction with the Neurokinin-1 Receptor Using Bioluminescence Resonance Energy Transfer , 2008, Molecular Pharmacology.

[3]  L. Hunyady,et al.  AT1 receptor blocker-insensitive mutant AT1A angiotensin receptors reveal the presence of G protein-independent signaling in C9 cells. , 2007, Biochemical pharmacology.

[4]  S. Gammeltoft,et al.  Differential extracellular signal-regulated kinases 1 and 2 activation by the angiotensin type 1 receptor supports distinct phenotypes of cardiac myocytes. , 2007, Basic & clinical pharmacology & toxicology.

[5]  S. Gammeltoft,et al.  The angiotensin type 1 receptor activates extracellular signal-regulated kinases 1 and 2 by G protein-dependent and -independent pathways in cardiac myocytes and langendorff-perfused hearts. , 2007, Basic & clinical pharmacology & toxicology.

[6]  C. Nakaie,et al.  The angiotensin II AT1 receptor structure-activity correlations in the light of rhodopsin structure. , 2007, Physiological reviews.

[7]  R. Gainetdinov,et al.  Physiological roles of G protein-coupled receptor kinases and arrestins. , 2007, Annual review of physiology.

[8]  R. Lefkowitz,et al.  β-Arrestins and Cell Signaling , 2007 .

[9]  J. L. Hansen,et al.  Cardiac regeneration by resident stem and progenitor cells in the adult heart , 2007, Basic Research in Cardiology.

[10]  Arthur Christopoulos,et al.  Functional Selectivity and Classical Concepts of Quantitative Pharmacology , 2007, Journal of Pharmacology and Experimental Therapeutics.

[11]  M. Bouvier,et al.  Distinct Signaling Profiles of β1 and β2 Adrenergic Receptor Ligands toward Adenylyl Cyclase and Mitogen-Activated Protein Kinase Reveals the Pluridimensionality of Efficacy , 2006, Molecular Pharmacology.

[12]  J. Violin,et al.  β-Arrestin2-mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes , 2006, Proceedings of the National Academy of Sciences.

[13]  S. Fluharty,et al.  Identification of structural determinants for G protein-independent activation of mitogen-activated protein kinases in the seventh transmembrane domain of the angiotensin II type 1 receptor. , 2006, Molecular endocrinology.

[14]  I. Komuro,et al.  Molecular Mechanism Underlying Inverse Agonist of Angiotensin II Type 1 Receptor* , 2006, Journal of Biological Chemistry.

[15]  D. Weiner,et al.  Integrative functional assays, chemical genomics and high throughput screening: harnessing signal transduction pathways to a common HTS readout. , 2006, Current pharmaceutical design.

[16]  John W. Adams,et al.  Gαq expression activates EGFR and induces Akt mediated cardiomyocyte survival: dissociation from Gαq mediated hypertrophy , 2006 .

[17]  U. Hacksell,et al.  Intrinsic Efficacy of Antipsychotics at Human D2, D3, and D4 Dopamine Receptors: Identification of the Clozapine Metabolite N-Desmethylclozapine as a D2/D3 Partial Agonist , 2005, Journal of Pharmacology and Experimental Therapeutics.

[18]  D. Roden,et al.  Cardiac-specific overexpression of AT1 receptor mutant lacking Gαq/Gαi coupling causes hypertrophy and bradycardia in transgenic mice , 2005 .

[19]  T. Kenakin New Concepts in Drug Discovery: Collateral Efficacy and Permissive Antagonism , 2005, Nature Reviews Drug Discovery.

[20]  C. Indolfi,et al.  Cardiac stem and progenitor cell biology for regenerative medicine. , 2005, Trends in cardiovascular medicine.

[21]  T. Sotnikova,et al.  An Akt/β-Arrestin 2/PP2A Signaling Complex Mediates Dopaminergic Neurotransmission and Behavior , 2005, Cell.

[22]  S. Yusuf,et al.  Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: a meta-analysis. , 2005, Journal of the American College of Cardiology.

[23]  Robert J. Lefkowitz,et al.  Transduction of Receptor Signals by ß-Arrestins , 2005, Science.

[24]  J. Violin,et al.  β-Arrestin 2-Dependent Angiotensin II Type 1A Receptor-Mediated Pathway of Chemotaxis , 2005, Molecular Pharmacology.

[25]  R. Lefkowitz,et al.  Constitutive Protease-activated Receptor-2-mediated Migration of MDA MB-231 Breast Cancer Cells Requires Both β-Arrestin-1 and -2* , 2004, Journal of Biological Chemistry.

[26]  M. Caron,et al.  ß-Arrestin 2 Regulates Zebrafish Development Through the Hedgehog Signaling Pathway , 2004, Science.

[27]  M. Bouvier,et al.  Receptor activity‐independent recruitment of βarrestin2 reveals specific signalling modes , 2004, The EMBO journal.

[28]  R. Lefkowitz,et al.  Differential Kinetic and Spatial Patterns of β-Arrestin and G Protein-mediated ERK Activation by the Angiotensin II Receptor* , 2004, Journal of Biological Chemistry.

[29]  J. L. Hansen,et al.  Oligomerization of Wild Type and Nonfunctional Mutant Angiotensin II Type I Receptors Inhibits Gαq Protein Signaling but Not ERK Activation* , 2004, Journal of Biological Chemistry.

[30]  D. Weiner,et al.  Loss-of-function polymorphic variants of the human angiotensin II type 1 receptor. , 2004, Molecular pharmacology.

[31]  R. Lefkowitz,et al.  Reciprocal Regulation of Angiotensin Receptor-activated Extracellular Signal-regulated Kinases by β-Arrestins 1 and 2* , 2004, Journal of Biological Chemistry.

[32]  Pascale G. Charest,et al.  β-Arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[33]  L. Hunyady,et al.  Independent β-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  S. Fluharty,et al.  Structural determinants for the activation mechanism of the angiotensin II type 1 receptor differ for phosphoinositide hydrolysis and mitogen-activated protein kinase pathways. , 2003, Biochemical pharmacology.

[35]  L. Hunyady,et al.  Peptide and nonpeptide antagonist interaction with constitutively active human AT1 receptors. , 2003, Biochemical pharmacology.

[36]  M. Caron,et al.  The Stability of the G Protein-coupled Receptor-β-Arrestin Interaction Determines the Mechanism and Functional Consequence of ERK Activation* , 2003, The Journal of Biological Chemistry.

[37]  L. Hunyady,et al.  Agonist induction and conformational selection during activation of a G-protein-coupled receptor. , 2003, Trends in pharmacological sciences.

[38]  Y. Hagiwara,et al.  Mechanical stretch-induced mitogen-activated protein kinase activation is mediated via angiotensin and endothelin systems in vascular smooth muscle cells. , 2002, Biological & pharmaceutical bulletin.

[39]  Hans Bräuner-Osborne,et al.  Probing intermolecular protein-protein interactions in the calcium-sensing receptor homodimer using bioluminescence resonance energy transfer (BRET). , 2002, European journal of biochemistry.

[40]  David A. Calhoun,et al.  Drugs targeting the renin–angiotensin–aldosterone system , 2002, Nature Reviews Drug Discovery.

[41]  T. Kubo,et al.  Altered Mitogen‐Activated Protein Kinase Activation In Vascular Smooth Muscle Cells From Spontaneously Hypertensive Rats , 2002, Clinical and experimental pharmacology & physiology.

[42]  S. Haunsø,et al.  Extracellular signal‐regulated kinases control expression of G protein‐coupled receptor kinase 2 (GRK2) , 2002, FEBS letters.

[43]  M. Lew,et al.  Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. , 2002, Molecular pharmacology.

[44]  R. Lefkowitz,et al.  β-Arrestin Scaffolding of the ERK Cascade Enhances Cytosolic ERK Activity but Inhibits ERK-mediated Transcription following Angiotensin AT1a Receptor Stimulation* , 2002, The Journal of Biological Chemistry.

[45]  R. Neubig,et al.  AT1 Receptor Mutant Lacking Heterotrimeric G Protein Coupling Activates the Src-Ras-ERK Pathway without Nuclear Translocation of ERKs* , 2002, The Journal of Biological Chemistry.

[46]  P. Corvol,et al.  Constitutive Internalization of Constitutively Active Angiotensin II AT1A Receptor Mutants Is Blocked by Inverse Agonists* , 2002, The Journal of Biological Chemistry.

[47]  M A Geyer,et al.  5-hydroxytryptamine2A receptor inverse agonists as antipsychotics. , 2001, The Journal of pharmacology and experimental therapeutics.

[48]  S. Mundell,et al.  Arrestin Specificity for G Protein-coupled Receptors in Human Airway Smooth Muscle* 210 , 2001, The Journal of Biological Chemistry.

[49]  T. Baranski,et al.  Functional reconstitution of the angiotensin II type 2 receptor and G(i) activation. , 2000, Circulation research.

[50]  S. Miura,et al.  Angiotensin II type 1 and type 2 receptors bind angiotensin II through different types of epitope recognition. , 1999, Journal of hypertension.

[51]  B. Maigret,et al.  Mutation of Asn111 in the Third Transmembrane Domain of the AT1A Angiotensin II Receptor Induces Its Constitutive Activation* , 1997, The Journal of Biological Chemistry.

[52]  T. Nanevicz,et al.  Thrombin Receptor Activating Mutations , 1996, The Journal of Biological Chemistry.

[53]  M. Brann,et al.  Pharmacology of muscarinic acetylcholine receptor subtypes (m1-m5): high throughput assays in mammalian cells. , 1996, European journal of pharmacology.

[54]  B. Maigret,et al.  Amino acids of the third transmembrane domain of the AT1A angiotensin II receptor are involved in the differential recognition of peptide and nonpeptide ligands. , 1995, Biochemical and biophysical research communications.

[55]  T. Yanase,et al.  Molecular cloning, sequence analysis and expression of a cDNA encoding human type-1 angiotensin II receptor. , 1992, Biochemical and biophysical research communications.

[56]  I. Sen,et al.  Solubilization and characterization of an angiotensin II binding protein from liver. , 1983, European journal of biochemistry.

[57]  E. Schiffrin,et al.  Brain receptor binding and central actions of angiotensin analogs in rats. , 1981, The American journal of physiology.

[58]  M. Sasamata,et al.  Telmisartan has the strongest binding affinity to angiotensin II type 1 receptor: comparison with other angiotensin II type 1 receptor blockers. , 2005, International journal of clinical pharmacology research.