Local and global distinguishability in quantum interferometry.

A statistical distinguishability based on relative entropy characterizes the fitness of quantum states for phase estimation. This criterion is employed in the context of a Mach-Zehnder interferometer and used to interpolate between two regimes of local and global phase distinguishability. The scaling of distinguishability in these regimes with photon number is explored for various quantum states. It emerges that local distinguishability is dependent on a discrepancy between quantum and classical rotational energy. Our analysis demonstrates that the Heisenberg limit is the true upper limit for local phase sensitivity. Only the "NOON" states share this bound, but other states exhibit a better trade-off when comparing local and global phase regimes.

[1]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[2]  Hradil,et al.  Entropy of phase measurement: Quantum phase via quadrature measurement. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[3]  Jeffrey H. Shapiro,et al.  Squeezed states in phase-sensing interferometers , 1984 .

[4]  Z. Y. Ou,et al.  FUNDAMENTAL QUANTUM LIMIT IN PRECISION PHASE MEASUREMENT , 1997 .

[5]  D. Varshalovich,et al.  Quantum Theory of Angular Momentum , 1988 .

[6]  Holland,et al.  Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.

[7]  Jonathan P. Dowling,et al.  A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.

[8]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  Jan Perina,et al.  PHASE ESTIMATION IN INTERFEROMETRY , 1998 .

[10]  J. Řeháček,et al.  Quantum interference and Fisher information , 2005 .

[11]  Milburn,et al.  Optimal quantum measurements for phase estimation. , 1995, Physical review letters.

[12]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[13]  José M. F. Moura,et al.  Acquisition in phase demodulation: application to ranging in radar/sonar systems , 1995 .

[14]  N. N. Chent︠s︡ov Statistical decision rules and optimal inference , 1982 .

[15]  A. Vourdas,et al.  SU(2) and SU(1,1) phase states. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[16]  Barry C. Sanders,et al.  Optimal quantum measurements for phase-shift estimation in optical interferometry , 1997 .

[17]  Braunstein Quantum limits on precision measurements of phase. , 1992, Physical review letters.

[18]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[19]  Augusto Smerzi,et al.  Phase sensitivity of a Mach-Zehnder interferometer , 2006 .

[20]  Christopher C. Gerry,et al.  Optical interferometry at the Heisenberg limit with twin Fock states and parity measurements , 2003 .

[21]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[22]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  Teich,et al.  Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics. , 1989, Physical review. A, General physics.

[24]  Shunlong Luo,et al.  Fisher information, kinetic energy and uncertainty relation inequalities , 2002 .

[25]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[26]  John L. Hall,et al.  Influence of decorrelation on Heisenberg-limited interferometry with quantum correlated photons , 1998 .

[27]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[28]  Exact uncertainty relations , 2001, quant-ph/0107149.

[29]  H. Cramér Mathematical methods of statistics , 1947 .

[30]  Klauder,et al.  SU(2) and SU(1,1) interferometers. , 1986, Physical review. A, General physics.

[31]  Phase-conjugate quantum communication with optical heterodyne detection. , 1995, Optics letters.